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Abstract graphical metaphors. On the other hand, the sophisticated

user that needs to express more complex queries should

We address the issue of designing effective query lan-be allowed to use a declarative, high-level query language,
guages for OLAP databases. The basis of our investigationsuch an extension of SQL. Finally, query optimization can
is MDD, a new data model for multidimensional databases be effectively performed by referring to a procedural, alge-
that, unlike other multidimensional models, is independent braic language. Thus, a family of different languages should

of any specific implementation and as such provides a clearby adopted be an OLAP system, and mapping between them

separation between practical and conceptual aspects. Inshould be defined.

this framework, we present and compare two query lan- | this paper, we present and investigate different query
guages, based on different paradigms, for OLAP databasesianguages for OLAP databases. The framework for our in-
The first language is algebraic and provides an effective vestigation isMD, a logical model for OLAP systems pro-
way to manipulate multidimensional data in a procedural nseq in [3]. This model includes a number of concepts that
fashion. Although this language is clean and powerful, it generalize the notions of dimensional hierarchies, fact ta-
is clearly not suited for final users. We therefore propose a bles, and measures, commonly used in commercial systems.
high-level graphical language that allows the user to spec- |, this framework, we propose two query languages, based
ify analytical queries in a natural and intuitive way. Itturns 5 different paradigms, for multidimensional databases. We
out that the two languages have the same expressive poweg; by considering a procedural query language, based on
an algebra, similar in spirit to relational algebra. This lan-
guage provides many insights on the way in which multidi-
mensional data can be manipulated and, for its procedural
1. Introduction nature, can be profitably used to specify query optimization.
However, it is clearly unsuited for a direct use. We then
investigate another query language, based on a graphical
paradigm, that lies at a higher abstraction level with respect
which factual data is described according to different per- ;ﬁi;hlz:l é?g;f’yi?é SUZ'ndge(szg\g;?\l/'ee;?;nF;';SS),/_\{\C/SUSSZO;/; ;r?é

ivi r “dimensions.” For instan in i e . . .
spect es or dimensions o stance, in a commercial guery multidimensional databases, since it allows the user
enterprise, single sales of items (the factual data) can be ef-

tactively analvzed when oraanized according to dimension to manipulate multidimensional data in a natural and intu-
like catg or )c/)f roduct 30 raphical Iocati%noand?irr? | itive way. We then provide a mapping between graphical
g y .p 9 .g. P ' ef' queries and algebraic expressions and prove the equivalence
Multidimensional analysis is supported by an emerging

¢ sof hnol led OneLi i of the expressive power of the two languages. The map-
category of software technology, called On-Line Analyti- i can he effectively used to perform optimizations over
cal Processing (OLAP) systems. These environments al-

) X > graphical queries. It turns out that, in both cas&sD is
low the user tq egsny summarize and view Qata_l, _but SUfferWell-suited for specifying OLAP queries, since it allows the
from some limitation in constructing and maintaining com- <o 0 apetract from implementation details.
plex analytical models over the enterprise data. Indeed, to . .
increase their effectiveness, OLAP systems should support 1he Paper is organized as follows. ThéD data model
the users with several query languages, possibly at differentS Priefly presented in Section 2. An algebra and a graphi-
abstraction levels. On one hand, the final user should bec@l uery language fok4D are first introduced informally,

enabled to perform point-and-click operations by means of by means of examples, in Section 3. Then, in Sections 4
and 5, we present, in a more systematic way, their syntax

*This work was partially supported KyNRand byMURST and semantics and state their equivalence. In Section 6, we

Multidimensional databases are large collections of data,
used for statistical analyses oriented to decision making, in




briefly compare our work with other approaches and finally, year area

in Section 7, we draw some conclusions. el ‘\ T
quarter
{ special-period city category brand numeric
2. The MD data model month /‘ \ /‘
day store item string

The MultiDimensional data modelMiD for short) is
based on two main constructs: dimension and f-tablie.
mensionsare syntactical categories that allow us to spec-

time location product
Addresgstore) : string, Name(item) : string

ify multiple “ways” to look at the informatioraccording to SALEs][Period: day, Product: item, Location: store] —
natural business perspectives under which its analysis can [NSales numeric, Income: numeric]

be performed. Each dimension is organized in a hierarchy CosTOFITEM[Product: item, Month: month] —

of levels corresponding to data domains at different gran- [Cost: numeric]

ularity. When a level; precedes a levdk (in symbols,

[ < l3) inthe hierarchy we say thatrolls up tol-. A level

can havedescriptionsassociated with it. Within a dimen-
sion, values of different levels are related through a family
of roll-up functions If a roll-up function associates a value
v1 of a certain level to a value; of an upper level in the
hierarchy, we also say that rolls up tov,. F-tablesare
partial functions fromsymbolic coordinategdefined with  are ysed in the figure: a table and an array. A symbolic co-
respect to particular combinations of levels)m@asures ordinate over the f-table/GEs is [day : Jan 5, 98item :
they are used to represent factual data. ehtryof an f-  gcraphblestore : Navond. The actual instance associates

tablef is a coordinate over whicfi is defined. ~ with this entry the valug2 for the measurélSalesand the
For example, as shown on top of Figure 1, a marketing yajye543.8 for the measuréncome

analyst of a chain of toy stores may organize its business
data along dimensiortime, product, location. Thetime

Figure 1. Dimensions, descriptions and
f-tables of a sample MD scheme

dimension is organized in a hierarchy of levels involving SALES _
day, month, quarter, year, andspecial-period. The domain Period Product  Location | NSales _Income
. . . 68
associated with the levehy contains, among others, values ja” g gg S;_fa_ﬁb'e ’\'}‘avona 3? 2411373
. an o, ISIKO avona .
Jan 5, 98 Feb 19, 98andMar 10, 98 all Qf vyhmh rollup to Jan 5. 98 Lego sunCity|| 42 71358
the elemenflQ-98of the levelquarter. Similarly, theloca- Jans, 98 Risiko SunCity|| 22  439.7
tion dimension is based on a hierarchy of levels involving Feb19,98 Scrabble  Navonal| 32 479.?8
. . . 5
store, city, andarea. The levelstore contains, for instance, Feb19,98  Lego Navona| 25  299.
| Col dN both of th li ¢ Feb 19, 98 Lego Colosseum 11 142.89
valuesColosseunandNavona both of them rolling up to Mar10.98  Risiko Navona 5 69,95
Rome(in level city) and Italy (in level area). A descrip- Mar10,98  Lego Sun City 6 71 .94
tion of the levelstore, in thelocation dimension, can be
its address Finally, theproduct dimension contains levels COSTOFITEM

; ) : Jan98 Feb-98 Mar98
item, category, andbrand. According to the corresponding Cost | Jan ° ar
Lego 12.99 9.99 9.9

hierarchy, any element of the levidm rolls up to both a Risiko || 1499 1299 1999
brand and a category. Note that there are two furdi@mic Scrabble|| 12.29 1299 1249
dimensions (that is, having just one level) that are used to Trivia 1899 1799
represenhumeric values andtrings.
In this framework, we can define, for instance, the f- . )
tables SLES and QSTOFITEM. The former describes Figure 2. An MD instance
summary data for the sales of the chain, organized along
dimensiongime (atday level), product (atitem level), and
location (at store level). The measures for this f-table are Roll-up functions are a distinctive feature of our model:
NSales(the number of items sold) andcome(the gross  they describentensionallyhow values of different levels
income), both having typsumeric. The f-table @STOF- are related. Moreover, as we will demonstrate shortly, they
ITEM is instead used to represents the costs of the variougprovide a powerful tool for querying multidimensional data,
items, assuming that costs may vary from month-to-month. since allow us to specify how data must be aggregated, and
A possible instance for these f-tables is shown in Fig- how f-tables involving data at different levels of granularity
ure 2. Note that two different (graphical) representations can be joined.




3. Querying M D Databases cated the corresponding names.

We now informally present and compare two query lan- 3.1. Basic Queries
guages for OLAP databases in the context of theD
model. The presentation is mainly based on examples that Intuitively, an MD queryis a mapping from instances
refer to the sample scheme introduced in the previous sec-over an inputMD scheme to instances over an outpd?
tion. scheme. The input and output schemes are defined over the
The first language is an algebra for th¢> model and same dimensions but distinct f-tables. For the sake of sim-
provides an effective way to manipulate f-tables in a pro- plicity, we shall assume that the output scheme of a query
cedural fashion. This language is based on a set of operacontains just a single f-table, calleditput f-table
tors over f-tables, similar in spirit to the relational algebra  As a first example, assume we need to define an f-table
ones. Actually, most of them are just generalizations of rela- ROMESALES (the output f-table) having scheme
tional operators; others are specific of the multidimensional
framework. [Period: day, Product: item, Location: store] —
The second query language has a graphical nature, and it [NSales numeric]
is suitable for end-users since it provides a simple way for
specifying queries over a multidimensional database. This
language is based on the observation that there is a natura
way to describe abtMD f-table with a graph that we call
f-graph Consider for instance theaSes f-table defined in
Figure 1; its scheme can be represented by the f-graph re-
ported in Figure 3. In this representation, the ovals denote

to represent the number of sales of each item in each day,
?nly for the stores in Rome. It is easy to see that this can be
obtamed from the SLES f-table, having scheme

[Period: day, Product: item, Location: store] —
[NSales numeric, Income: numeric]

which is therefore the input f-table of the query.
In the algebra, we first need to extend the input f-table
BRAND YEAR with a new attribute over the levelty, holding the city in
which each store is located. This operation can be specified
@ATEGORY Product SPEC.AL) (QUART@ with the specialoll-up operatorgjfl:ff1 (F), which extends

|TEM PERIOD

Product Time

an f-table F involving an attributé; over a level,, with a
new attributed, over a level, = [, making use of the roll-

Location

( o ) (Lgﬂ? SaLes Pgﬁd ) ’( MONT“) up function from/; to /,. We can then perform a selection
over the new attribute, and finally project out the unneeded
AREA f“d“"&/ attributes and measures. All of this can be specified with

the following algebraic expression.

) ) ) T [Period, ProductLocatior]—>[NSaIeﬂ;(UCity:Rome(
Figure 3. A graphical representation of an City:city

f-table scheme QLocationstore(SALES) ))

In the graphical language, we can specify the same query
levels of dimensions (which are represented by hypernodeswith a sequence of graphs that denotes a cascade of scheme
of the given graph), the parallelograms denote level descrip-restructurings: the first graph, called tbeurce describes
tions, and the circles denote measures of f-tables. The centhe input scheme; the last graph, called theget de-
tral node is called thEnodeand represent the entries of the scribes the output scheme; the intermediate ones (cslled
f-table. The various nodes of the graph are connected bygraphg form the query specificatiormand describe the in-
directed arcs that represent functional relationships; for in- tended transformations.
stance, an arc between two levels represents a roll-up func- In the example above, the source is the graph in Fig-
tion, whereas an arc between the fact node and a measurare 3, the target is reported on the bottom of Figure 4, and
node represents the function associating a measure with théhe query specification is composed by one s-graph only,
entries of the f-table. Note that the levels on which the f- shown on the top of Figure 4. In s-graphs, nodes can be
table is defined have a further label (the corresponding at-markedandlabeled Marks specify the levels and the mea-
tribute name) and are emphasized, but also the other levelsures of the graph that follows in the sequence (in our case
of each dimension have been represented. As we will showof the target). Labels specify selections and renamings: a
shortly, this is useful for specifying roll-up operations. Fi- label preceded by a comparison predicate specifies a selec-
nally, for measures and level descriptions we have just indi- tion over the corresponding node, whereas a label involving



Product Time

.
M
Product:
/ | = )
. ECIAL
i JHEHMCED

Period:
SALES Day H MONTH)

Product Time

/o] P
@ATEGORY

Product: SPECIAL
UARTER
ITem ) PER\OD) (Q )
x
Location | T T

Location: Rome Period:
( Ciry H Srore SALES DAy HMONTH)
@

Location

Location:
STORE

Figure 4. A simple graphical query

an arrow specifies a renaming. In our example, we have
marked the levelssfore, item, andday) and the measures
(NSaleg, which are of interest in the output, and we have
specified a selection over the lewvdly. The name of the
resulting f-table is ®MESALES. Note that it is possible to
specify a selection over a node that is not marked, since we  Figure 5. A query involving scalar functions
assume that the needed roll-up is performed automatically

by the system. , : i _ are given on a monthly basis). To this end, we first need
From an operational point of view, we forecast the possi- to roll up the attributePeriod of the f-table 3\LES to the

bility to specify marks and labels directly over an s-graph of level month (defining a new attributdlonth), and then join

the sequence forming a query, and the automatic derivationthe resulting f-table with the f-tabledTOFI TEM, having
of the “skeleton” of the s-graph that follows. scheme '

3.2. Scalar Functions [Product: item, Month: month] — [Cost: numeric],

over the common attributé®roduct and Month We can
now compute the desired values by applying the formula
Income— (NSales« Cos} over the result of the join. This

An important feature needed in querying numeric data
is the ability to apply scalar functions. A scalar function

makes use of atomic values as input and output (e.g., a”can be done by means of a special operath=¢(T) that

the standard mathematical operators, such andx+). For .

. - . extends the scheme of the f-table T with a new measure
instance, scalar functions can be used to obtain, from ourM obtained by applying the scalar functigrio each entr
sample database, an f-tablr®FIT over the scheme Y applying y

of T. The result is finally obtained with a projection over
the needed attributes and measures. In sum, we have the

[Period: day, Product: item, Location: store] — : )
following expression:

[Gain : numeric]

. . . . ) i ) Gain=Income- (NSales Cosf
representing the daily profit, for each store and item. In fact, " [PeriodProductLocatiod—[Gair] (¢ (

this value can be obtained, for each item, byltiplying CosTXouom ™M (Sp| ES))).
the number of pieces sold by a store in a day, by the cost Periodday
of the item in the corresponding montle¢all that the costs The same query can be specified in a graphical way as



Product Time

SeeciAL QUARTER
PERIOD

Rt }—u' MONTH’
Day

described in Figure 5. The source (which is hot shown) con-
sists of a disconnected graph describing the input f-tables:
SALES and STOFITEM. The query specification con-
sists of the two s-graphs depicted on top of Figure 5. The CaTEcoRY
first one specifies the join of the input f-tables by means of Looston
two arcs that connect the levels over which the join has to
be performed. Also in this case, we assume that the sys- CC'” )‘7(
tem is able to execute automatically the needed roll-up op-

eration over the f-table 8&Es. The scheme of the result Aren (= @
of the join forms the skeleton of the second s-graph of the [ess—sn]
query specification. This s-graph introduces a new measure o e

(denoted by a dashed arc) that is computed from the other
measures by the corresponding formula; again, marks are
QUARTER
e )

Location: SALES
Srore

used to specify levels and measures of interest. The result
of this transformation is the target of the query, shown on
the bottom of Figure 5.

CATEGORY

Location

Location:
ARea

3.3. Aggregate Functions

Aggregate functions are of special interest in OLAP sys- @
tems: they take as input a collection of values and return an
atomic value. Typical aggregate functions are those of SQL,

that is,min , max, count , sum, andavg , which apply to Figure 6. A query involving an aggregate func-

columns of relational tables. tion
An aggregate function can be used, in our running
database, to define the f-tabl&$MARY SALES over the
scheme the desired levels of the target scheme. Since the granular-
ity of these levels is coarser than the levels of the source (the
[Period: month, Location: area, Product: item] — emphasized ones) this operation also requires the specifica-
[TotSales numeric] tion of an aggregation over the selected measures. This is

i , done by labeling the noddSaleswith the aggregate func-
representing summary data of sales, detailed by monthyiqn sym and with the namaotSalesf the resulting mea-

item, and.area.. This f-table can be obtained with the al- ;. The target of the graphical query is shown on the bot-
gebra by first using the roll-up operator to extend the f-table 1, o¢ Figure 6. Note that, in this f-graph, only the levels

SALES with two new attributes holding area and month 5 can pe used to specify further aggregations (or selec-
of each sale, and then applying tkem aggregate func- tions) are shown.

tion to NSaIeswhiI.e grouping by r_nlonth,.area, ant_i prod- Assume now that we want to compute the f-table
uct. -lj_‘?f aggregation can be specified with a special operay onrHLy ProFIT to represent the monthly profit, detailed
tor ;/)AIT?(A;)(T), whose result contains just the attributes by item, defined over the scheme

Ay, ..., Ay of T and the new measund, obtained by ap- . _ _ _
plying the aggregate functiop to the measurél/; of T, [Period: month, Product: item] — [TotGain: numeric].
grouping over the attributes,, . . ., A,. We then have the 14 4o 50, we can use the above defined f-taleRT, sum-

following expression, in which the outer operagosimply marizing by months over all stores, as follows.

performs a renaming of attributes:
TotGain=sum(Gain) , Monthmonth P
TotSales=sum(NSale$ Pmonth— Period(¢ProductM0nth (QPeriodday ( ROFlT) ))

p ; iod ¥ ( . ,
Area LocationMonth Period, ™ Month Area Product The same query can be specified in a graphical way as
Areaarea Monthmonth

gLocaﬂonstore(gpe,iodday (SALES)))) described in Figure 7. The source of this query is the target
of the query reported in Figure 5, and its specification needs
The same query can be specified in a graphical way asjust one s-graph describing the levels of aggregation, the
described in Figure 6. Again, the source is the f-graph aggregate function, and some renaming.
shown in Figure 3. The query specification consists of asin-  This example shows that both graphical and algebraic
gle s-graph, reported on top of Figure 6. In this s-graph, the queries can be composed, since the target of a query can be
nodesarea, item, andmonth have been marked to specify used as source of another one.
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3.4. Abstraction Queries

In the context of multidimensional data, it is often useful
to transform measures into attributes of f-tables, and vice
versa. This allows the user to change dynamically the per-
spectives under which the analysis is performed. We call
abstractionssuch transformations. AReA

Assume for instance that we intend to define an f-table
TOTALSALES with no measures having scheme

Location

City

Figure 8. An abstraction quer
[Prod: item, Loc : store, Per: year, TS: numeric] — []. g query

This f-table can be obtained fromaBEs by first summa- 4 The Algebraic Query Language
rizing on the number of sales with a roll-up operation, and

then applying the abstraction operatoy; (T), which “pro-
motes” the measurg/ of the f-table T to an attribute. The
resulting expression is the following:

In this section we present more formally théD alge-
bra. Similarly to what happens with the relational algebra,
the operators of theé\{D algebra are closed, that is, they

P e | wTotSa'e&sum.(NSales( apply to f-tables and produce an f-table as result. In this
Yea’_’Pe”"dYea:si?e ProduciLocation Year way, the various operators can be composed to forni-the
Operiodday (SALES)))) expressionsf the language.

o ) It is worth noting that, to obtain closed operators, each
The same query can be specified in a graphical way ast.expression must satisfyfanctional dependendyom its
described in Figure 8. It is possible to see that the graph-attriputes to its measures. To guarantee this property, suit-

ical specification requires two s-graphs. The first s-graph gp|e syntactical conditions need to be introduced over some
specifies the aggregation over the desired levels. The secpperator.

ond one defines a new dimension starting from a measure of F-expressionsre defined recursively as follows.

the intermediate result of the query. The abstraction is spec-

ified by the creation of a new node, defined with respect to F-tables. If F is an f-table having schenjé!, ..., 4,,] —

an existing node, that belongs to a new dimension named[M3, ..., M,,], then F' is an f-expression over the same
Similarly to the creation of new measures, dimension cre- scheme ag’, that is, an f-expression over the attributes
ation is denoted by a dashed arc. Ay, ..., A, and the measure¥/y, ..., M,,.



The result ofF is, trivially, F' itself.

Cartesian product. If F, E’ are f-expressions hav-
ing schemes[4,,...,4,] — [Mi,...,M,] and
[AY,...,AL] = [M{,..., M/ ], respectively, over dis-
joint attributes and measures, thBrx E’ is an f-expression
with schema over the attributes,, ..., A,, A,..., A,
and measured{y, ..., My, M{, ..., M/} ..

As usual, the result contains an entry for each pair of

entries in the two f-expressions, having as measure the juxp, _, , (E)

taposition of the two corresponding measures.

Natural join. If £ and E’ are f-expressions over
[A1,~~~,Ak,Ak+1,~~~,An] — [Ml,...,Mm] and
[Ar, oo Ag, Ap gy Al = [M, .., M), respec-

tively, that is, havingA4,, ..., Ax as common attributes

(defined over the same levels) and no common measures,

then EXIE’ is an f-expression with schema over the
attributes Ay, ..., Ag, Akt .- -, Al and
measures\y, ..., My, M|, ..., M/ ..

The result has an entry for each pair of entries in the

/
ny Apygs -
/

two f-expressions with the same values on the common at-

ing scalar functions taken from a vocabuldryof available
functions.

The result contains the same entriegzasThe measures
associated with an entryare the same a&, plus the new
measurel/, having valuep ().

Renaming. If £ is an f-expression having scheme
[A1,...,Ax] —  [My,...,My], A; is an at-
tribute of £, and A is a new attribute name, then
is an f-expression over the scheme
[Al, .. ~,Ai—1,Ai+1, .. .,An,A] — [Ml, cey Mm]

The result contains an entr/ for each entryy in E,
where~’ is obtained fromy by renaming the attribute name
A; into A.

The result satisfies the functional dependencies ak-
named accordingly.

Selection. If £ is an f-expression having scheme
[A1,...,A] — [My, ..., M,] and? is a condition (de-
fined next), thenoy (E) is an expression over the same
scheme ag’.

A conditionover an f-table scheme is a boolean expres-

tributes; the corresponding measures are the juxtapositiorsion of the formté¢’, where:t and¢’ are attributes, mea-

of the measures of the original entries.

Roll up. Let I be an f-expression having scheme
[A1, ..., Ax] = [Mi,..., My], and let4; : [ be an at-
tribute of £'. If A”is an attribute name aridlis a level such
that! rolls up tol’, theng , ., (E) is an f-expression having
schemdAy, ..., A, Al = [My, ..., My,].

The semantics of this f-expression is defined as follows.
If v is an entry ofF/, andy(A;) rolls up too’ in the levell’,
then the result contains an entryobtained by extending
with the attributed’ in such a way thay/(A4’) = o'.

Note that the result of this operation satisfies the func-
tional dependency; — A’.

Level description. Let £ be an f-expression having scheme
[A1, ..., Ax] = [Mi,..., My], and let4; : [ be an at-
tribute of £. If A is an attribute name andis a level de-
scription of the level, thend =1 (E) is an f-expression
having schem@A4,, ..., A,, A] = [My, ..., My].

The semantics of this f-expression is defined as follows.
If v is an entry ofE, then the result contains an entyy
obtained by extending with the attributeA in such a way
thaty’ (4) = d(v(4;)).

Note that the result of this operation satisfies the func-
tional dependencyl; — A.

Scalar function application. If £ is an f-expression over
[A1, ..., Ax] = [My, ..., My,], M is ameasure name, and
¢ is a scalar formula (defined next), thed!=¢(F) is an f-
expression over the same attributedoénd over the mea-
suresM, M1, ..., My,.

A scalar formulaover an f-table scheme is an expres-

sures, or constants; adds a built-in comparison predicate
such as=, #, >, etc.

The result contains an entry éf and the corresponding
measures, only they satisfy the condititn

In general, the result satisfies the same functional depen-
dencies as”. However, if the condition’ has the form
A; = A;, whereA; and 4; are attributes, then the result
satisfies also the functional dependencigs — A; and
Aj — Az

Simple projection. If £ is an f-expression having scheme
[A1,...,Ax] — [My,...,My], h < nandk < m, and
I satisfies the functional dependendy, ..., A, — A;,
for eachi > h, thenma, . a0, w0 (E) is an f-
expression over the scheméy, ..., Ap] = [My, ..., My].
The result contains an entry for each entryy of E,
which is the restriction ofy to the attributesd, ..., Ap;
the measures associated withare the restriction of the
measures associated witho M, . .., M.
It is worth noting that, because of the functional depen-
dencies satisfied by, the result contains the same number
of entries agv.

Aggregation. Let £ be an f-expression having scheme
[Al,...,An] — [Ml,...,Mm]. Letk S n,Nl,...,Nl be
measure names, a4, . . ., ¢; be aggregate function from

F. Then;/)x:f“éiw”)"”’N’:g’(M”)(E) is an f-expression
over the schem@dy, ..., Ax] = [Ny,..., N]].

The semantics is as follows. Letbe a tuple over the
attributesA,, . .., Ax, and let?’, be the set of entries il

whose restriction tol, . . ., Ax coincides withy. If 77, is

sion built from attributes, measures, and constants by us-not empty, theny is an entry of the result; the value for



the measureV; associated withy is the result of applying
the aggregate functiog; to the multiset of measure¥;,
associated with the entriesT,, for 1 < j <.

Abstraction. If E is an f-expression with scheme

[Al,...,An] — [Ml,...,Mm] and k S m,
then aar, . m (E) is an f-expression over
[Al,...,An,Ml,...,Mk]—)[M;H_l,...,Mm].

The result contains an entry’ for each entryy of
E. The entryy’ is obtained by extending with the at-
tributesM,, ..., My, which take their values from the cor-
responding measures. The measures associated+With
are the restriction of the measures associated witio
Mg, ..., My,.

The result satisfies
Al,...,An — My, ..., Mg.

the functional dependency

Definition 4.1 (Algebraic Query) An  MD  algebraic
query@ over anMD schemes is an f-expression over the
f-tables ofs.

5. The Graphical Query Language

¢ within a g-dimension ovef there is an arc iryr from
a noden; over a levell; to a noden, over a level
l; = [y ifand only if{; immediately precedds in the
partial order defined ovet.

In an f-graph, we also call-nodesall the nodes different
from the f-node.

Example 5.2 The f-node of the f-graph in Figure 3 is the
one named SLES (we have used the convention to name
the f-node with the name of the corresponding f-table). This
f-graph has three g-dimensions (ownoduct, Time, and
Location), three a-nodes (namddcation Product and
Period over Store, Item, and Day, respectively), two m-
nodes (namelSalesandincomg, and two d-nodes (named
Addressand Namé. The others nodes are r-nodes. =

We now introduce the notion of graphical query specifi-
cation (s-graph for short) that is built over a set of f-graphs,
as follows.

Definition 5.3 (S-graph) Let S be a non-empty set of f-
graphs. Ans-graphGg over S is a labeled graph, such

We now present the syntax and the semantics of thethat:

graphical query language for thidD> model. We first show
how it is possible to associate a graph with an f-table, which
we call its f-graph.

Definition 5.1 (F-graph) Let F[A; : [y,..., 4, : ] —
[My 2 lY,..., M, : 1] be an f-table scheme over a set
D of dimensions. Thégraphof F' is an directed acyclic
graphgr, such that:

¢ there is just one node igr with no incoming arc,
called thef-nodeof ¢p; all the other nodes are asso-
ciated with some level dP: if a noden is associated

with a levell we say that is overl;

for each attributed; of F', 1 < ¢ < n, there is a node
n; in gp, NamedA; and overl;, and there is an arc
from the f-node to; — these nodes are called the
nodesof gp;

for each measuré{; of /, 1 < j < m, there is a
noden’ in gp, namedM; and overl}, and there is an
arc from the f-node te; — these nodes are called the
m-nodeof g;

for each a-node: over a level in a dimensionf € D
there is also a node ipr for each level’ # [ of d such
that! < I’ — these nodes are callechodesof g and
form ag-dimension ovet;

for each node: over a levell having a level descrip-
tion (/) : !, there is a node’ in g over!’ and an
arc fromn to n’ — these nodes are callednodesof
gF,

¢ (s has allthe nodes and arcs of the f-graph$irthat
is, the f-graphs irt' are disjoint subgraphs daf's;

(G5 can have new m-nodes: for each of them there is a
new arc from an f-node to it, labeled with an expres-
sion of the form\/ <+ ¢, whereM is a name and is

a scalar formula over the names of the m-nodes;of

(G's can have new arcs between pairs of I-nodes over
the same level, each of which is labeled with a built-in
comparison predicate;

an |I-node inGG s over a levell can be labeled with an
expression of the forrv, whereé is a comparison
predicate and is a constant in the domain &f

an I-node inG g can be labeled with an expression of
the formA <, whereA is a new name;

an m-node inG's can be labeled with an expression of
the formM « ¢(), whereM is a new name angl is
an aggregate function;

(G5 can have new a-nodes: for each of them there is
a new arc from an f-node to it, a new g-dimension
for it, and it is labeled with an expression of the form
A « B, whereA is a new name and is a name of
an m-node ofi;

an |-node inGs can bemarked with the limitation
that there is at most one marked I-node for each g-
dimension.



An s-graph specifies a restructuring operation over f- e finally, the presence of marked I-nodes G may
graphs. This operation is captured by two mappirgand describe a projection over the specified attributes and
O. The former is a mapping from s-graphs to f-graphs and measures.
specifies the structure of the result of the restructuring. The ] .
latter is a mapping between f-table instances that specifies/Ve are now ready to define the notion of query.
the underlying data transformation. The two mappings are
defined below; because of space limitation, some technical
details are omitted.

Let G5 be an s-graph over a sgtof f-graphs:®(G's) is
an f-graph defined as follows.

[Definition 5.4 (Graphical Query) An MDD  graph-
ical query ) is a sequence of s-graphggy =
(Gs,Gq,...,Gi, Gy), wherek > 0. The s-graphG,
is called thesourceof Gg and is composed by a finite set of
f-graphs. The s-graply, is called thetargetof Gg and is
e &(Gg) contains one f-node; composed by one f-graph only. The sequefige. . ., G
. . is calledquery specificationEach s-graph; in the query

o thereis one m-node i(G:'s) for each markednmode o ification is over the f-graph defined by the previous

of s s-graphG;_;. The result of the query is defined as the

o there is one a-node ib(Gs) for each marked aodes ~ COMPposition of the mapping(G:;).

of Gs; . . -
Example 5.5 Consider the graphical query in Figure 5.

¢ the r-nodes, d-nodes, and g-dimension®{i/s) are The source of this query is composed by the f-graphs cor-

defined from m-nodes and a-nodes as in Definition 5.1; responding to the f-tablesaes (shown in Figure 3) and
CosTOFITEM. The query specification is composed by two
s-graphs. The mapping defined by the first one corresponds
to the algebraic expressidry :

e the m-nodes and a-nodes #((Gs) have the same
names and levels of the corresponding node& of
except when they are labeled: in this case, a node la-

beledA « v is namedA in ®(G¢) and is over a level T[S Periods. Product.ocatio [Cosi (

that depends om.
US.Produd:C.ProductC.Period:Month(
Now, letG¢ be an s-graph over a sétof f-graphs: the Monthmonth
mapping®(Gs) takes as input a set of instances over the COST X Qperiogday (SALES))).

schemes described ky and returns an instance over the
scheme described b¥(G'¢). This mapping is defined us-
ing the MD algebra: intuitively, each element 6fs cor-
responds to the application of an algebraic operator, as fol- T [Period ProducLocatior—[Gair]

The second s-graph defines the mappiihg

(¢Gainzlncom& (NSalesCosh (El ) )

lows. The composition of these two expressions define the result
e The presence of several f-graphsdh; describes a  Of the query, whose scheme is described by the target of the
cartesian product over the corresponding f-tables; ~ graphical query shown on the bottom of Figure 5. =
¢ the presence of m-nodeshs not occurring inS de- The given definitions suggest that tleach graphical
scribes a scalar function application over the corre- query can be expressed by adD algebraic expression.
sponding measures, as specified by their labels; Actually, we can also show that the converse holds. We

. L then have the following result.
¢ the presence of arcs ifig not occurring inS and |- g

nodes labeled by comparison predicates describes a serpeorem 5.6 TheMD algebraic and graphical languages
lection, possibly followed by a level descriptionand a ave the same expressive power.
roll-up;

o the presence of I-nodes s labeled by expressions 6. Related Work
of the form A « describes a renaming;

The term OLAP has been recently intluced to char-
acterize the category of analytical processing over large,
historical databases (data warehouses) oriented to decision
making. Further discussion on OLAP, multi-dimensional
analysis, and data warehousing can be found in [5]. A com-
¢ the presence of a-nodes s not occurring inS de- parison between OLAP concepts and the area of statistical

scribes an abstraction; databases is given in [8].

¢ the presence of I-nodes in m-nodes(i labeled by
expressions of the form « g¢() describes a roll-up
followed by an aggregation (marked nodes specify the
desired level of aggregation);



The multidimensional data model illustrated in this pa- complex queries possibly involving several f-tables. More-
per has been proposed in [2, 3]. In the previous papers weover, the metaphors we have used are more abstract and so
have proposed a design methodology for multidimensionalmore natural for naive users than the ones used in the above
databases [3], and we have presented a declarative quergystems, which are mainly based on nested folders.
language and studied its expressiveness [2]. The present pa-
per is devoted to the investigation of two further paradigms 7. Conclusion
for querying OLAP databases.

Many authors [1, 4, 7] claim that SQL is unsuited to |n this paper we have investigated a framework for the
data-analysis applications, since some aggregate and groufnanipulation of multidimensional databases. Our proposal
ing queries are difficult to express and optimize. They thus relies onM P, a model for multidimensional data, which
consider the problem of extending SQL with specific ag- provides a clear separation between practical and concep-
gregation and analysis-oriented operators. Gray et al. [7]tual aspects of OLAP systems. We have studied, in this
proposedcube as an operator generalizirgyoup by . context, two query languages, over different paradigms,
Chatziantoniou and Ross [4] extend both SQL and the re-that can be effectively used for querying multidimensional
lational algebra with an operator, which deals with “aggre- databases, demonstrating thetD is well-suited for this
gation variables”, to succinctly express common queries. purpose, since it allows the user to disregard implementa-
Agrawal et al. [1] have proposed a framework for study- tion aspects. The first language is based on an algebra and
ing multidimensional databases, consisting of a data modelprovides an effective way to manipulate multidimensional
based on the notion of multidimensional cube, and a pow- data in a procedural fashion. The second query language has
erful algebraic query language. Many of the features con- 5 graphical nature, and it is suitable for end-users since it
sidered in such proposals can be expressed in our languaggsrovides a simple tool for specifying queries over an OLAP
using a suitable collection of scalar and aggregate functions database. We have also shown that the two languages have

Gebhardt et al. [6] propose a tape-based model of multi-indeed the same expressive power.
dimensional data, together with an operational framework
for visualization and querying that makes use of opera- References
tions on tapes (e.g., scrolling and intersection) as graphical
metaphors. This framework yields a way to bglld work- [1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidi-
sheets from operational sources and define their visualiza- mensional databases. 18th IEEE Int. Conf. on Data Engi-
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sional queries. Moreover, our graphical language is based tidimensional databases. Bth Int. Conf. on Extending
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on different metaphors (graphs and trees) that, we believe, [4] D. Chatziantoniou and K. Ross. Querying multiple features

are easier to understand for non-expert users. of groups in relational databases.28th Int. Conf. on Very
The aspect of manipulating multidimensional databases Large Data Basegag. 295-306, 1996.

is covered by commercial OLAP systems essentially in a [5] S. Chaudhuri and U. Dayal. An overview of Data Ware-

pragmatic way, providing the users with powerful visual- housing and OLAP technologyACM SIGMOD Record
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in general more expressive since allows the user to express



