
From a Procedural to a Visual Query Language for OLAP�

Luca CabibboandRiccardo Torlone
Dipartimento di Informatica e Automazione

Università di Roma Tre

Abstract

We address the issue of designing effective query lan-
guages for OLAP databases. The basis of our investigation
isMD, a new data model for multidimensional databases
that, unlike other multidimensional models, is independent
of any specific implementation and as such provides a clear
separation between practical and conceptual aspects. In
this framework, we present and compare two query lan-
guages, based on different paradigms, for OLAP databases.
The first language is algebraic and provides an effective
way to manipulate multidimensional data in a procedural
fashion. Although this language is clean and powerful, it
is clearly not suited for final users. We therefore propose a
high-level graphical language that allows the user to spec-
ify analytical queries in a natural and intuitive way. It turns
out that the two languages have the same expressive power.

1. Introduction

Multidimensional databases are large collections of data,
used for statistical analyses oriented to decision making, in
which factual data is described according to different per-
spectives or “dimensions.” For instance, in a commercial
enterprise, single sales of items (the factual data) can be ef-
fectively analyzed when organized according to dimensions
like category of product, geographical location, and time.

Multidimensional analysis is supported by an emerging
category of software technology, called On-Line Analyti-
cal Processing (OLAP) systems. These environments al-
low the user to easily summarize and view data, but suffer
from some limitation in constructing and maintaining com-
plex analytical models over the enterprise data. Indeed, to
increase their effectiveness, OLAP systems should support
the users with several query languages, possibly at different
abstraction levels. On one hand, the final user should be
enabled to perform point-and-click operations by means of

�This work was partially supported byCNRand byMURST.

graphical metaphors. On the other hand, the sophisticated
user that needs to express more complex queries should
be allowed to use a declarative, high-level query language,
such an extension of SQL. Finally, query optimization can
be effectively performed by referring to a procedural, alge-
braic language. Thus, a family of different languages should
by adopted be an OLAP system, and mapping between them
should be defined.

In this paper, we present and investigate different query
languages for OLAP databases. The framework for our in-
vestigation isMD, a logical model for OLAP systems pro-
posed in [3]. This model includes a number of concepts that
generalize the notions of dimensional hierarchies, fact ta-
bles, and measures, commonly used in commercial systems.
In this framework, we propose two query languages, based
on different paradigms, for multidimensional databases. We
start by considering a procedural query language, based on
an algebra, similar in spirit to relational algebra. This lan-
guage provides many insights on the way in which multidi-
mensional data can be manipulated and, for its procedural
nature, can be profitably used to specify query optimization.
However, it is clearly unsuited for a direct use. We then
investigate another query language, based on a graphical
paradigm, that lies at a higher abstraction level with respect
to the algebra. By using several examples, we show that
this language yields a declarative and easy-to-use tool to
query multidimensional databases, since it allows the user
to manipulate multidimensional data in a natural and intu-
itive way. We then provide a mapping between graphical
queries and algebraic expressions and prove the equivalence
of the expressive power of the two languages. The map-
ping can be effectively used to perform optimizations over
graphical queries. It turns out that, in both cases,MD is
well-suited for specifying OLAP queries, since it allows the
user to abstract from implementation details.

The paper is organized as follows. TheMD data model
is briefly presented in Section 2. An algebra and a graphi-
cal query language forMD are first introduced informally,
by means of examples, in Section 3. Then, in Sections 4
and 5, we present, in a more systematic way, their syntax
and semantics and state their equivalence. In Section 6, we

briefly compare our work with other approaches and finally,
in Section 7, we draw some conclusions.

2. TheMD data model

The MultiDimensional data model (MD for short) is
based on two main constructs: dimension and f-table.Di-
mensionsare syntactical categories that allow us to spec-
ify multiple “ways” to look at the information,according to
natural business perspectives under which its analysis can
be performed. Each dimension is organized in a hierarchy
of levels, corresponding to data domains at different gran-
ularity. When a levell1 precedes a levell2 (in symbols,
l1 � l2) in the hierarchy we say thatl1 rolls up tol2. A level
can havedescriptionsassociated with it. Within a dimen-
sion, values of different levels are related through a family
of roll-up functions. If a roll-up function associates a value
v1 of a certain level to a valuev2 of an upper level in the
hierarchy, we also say thatv1 rolls up to v2. F-tablesare
partial functions fromsymbolic coordinates(defined with
respect to particular combinations of levels) tomeasures:
they are used to represent factual data. Anentry of an f-
tablef is a coordinate over whichf is defined.

For example, as shown on top of Figure 1, a marketing
analyst of a chain of toy stores may organize its business
data along dimensionstime, product, location. The time
dimension is organized in a hierarchy of levels involving
day, month, quarter, year, andspecial-period. The domain
associated with the levelday contains, among others, values
Jan 5, 98, Feb 19, 98, andMar 10, 98, all of which roll up to
the element1Q-98of the levelquarter. Similarly, theloca-
tion dimension is based on a hierarchy of levels involving
store, city, andarea. The levelstore contains, for instance,
valuesColosseumandNavona, both of them rolling up to
Rome(in level city) and Italy (in level area). A descrip-
tion of the levelstore, in the location dimension, can be
its address. Finally, theproduct dimension contains levels
item, category, andbrand. According to the corresponding
hierarchy, any element of the levelitem rolls up to both a
brand and a category. Note that there are two furtheratomic
dimensions (that is, having just one level) that are used to
representnumeric values andstrings.

In this framework, we can define, for instance, the f-
tables SALES and COSTOFITEM. The former describes
summary data for the sales of the chain, organized along
dimensionstime (at day level),product (at item level), and
location (at store level). The measures for this f-table are
NSales(the number of items sold) andIncome(the gross
income), both having typenumeric. The f-table COSTOF-
ITEM is instead used to represents the costs of the various
items, assuming that costs may vary from month-to-month.

A possible instance for these f-tables is shown in Fig-
ure 2. Note that two different (graphical) representations

day
HHY �

��month
6

quarter
��*

special-period
A
AK

year

time

store

6

city

6

area

location

item
A
AK

category

�
��

brand

product

numeric

string

Address(store) : string, Name(item) : string

SALES[Period: day; Product: item; Location: store]!
[NSales: numeric; Income: numeric]

COSTOFITEM[Product: item; Month : month]!
[Cost: numeric]

Figure 1. Dimensions, descriptions and
f-tables of a sample MD scheme

are used in the figure: a table and an array. A symbolic co-
ordinate over the f-table SALES is [day : Jan 5, 98; item :
Scrabble; store : Navona]. The actual instance associates
with this entry the value32 for the measureNSalesand the
value543:68 for the measureIncome.

SALES

Period Product Location NSales Income

Jan 5, 98 Scrabble Navona 32 543:

68

Jan 5, 98 Risiko Navona 27 512:

73

Jan 5, 98 Lego Sun City 42 713:

58

Jan 5, 98 Risiko Sun City 22 439:

78

Feb 19, 98 Scrabble Navona 32 479:

68

Feb 19, 98 Lego Navona 25 299:

75

Feb 19, 98 Lego Colosseum 11 142:

89

Mar 10, 98 Risiko Navona 5 69:

95

Mar 10, 98 Lego Sun City 6 71:

94

COSTOFITEM

Cost Jan-98 Feb-98 Mar-98

Lego 12:

99
9:

99
9:

99

Risiko 14:

99 12:

99 12:

99

Scrabble 12:

99
12:

99
12:

49

Trivia 18:

99
17:

99

Figure 2. An MD instance

Roll-up functions are a distinctive feature of our model:
they describeintensionallyhow values of different levels
are related. Moreover, as we will demonstrate shortly, they
provide a powerful tool for querying multidimensional data,
since allow us to specify how data must be aggregated, and
how f-tables involving data at different levels of granularity
can be joined.

3. QueryingMD Databases

We now informally present and compare two query lan-
guages for OLAP databases in the context of theMD
model. The presentation is mainly based on examples that
refer to the sample scheme introduced in the previous sec-
tion.

The first language is an algebra for theMD model and
provides an effective way to manipulate f-tables in a pro-
cedural fashion. This language is based on a set of opera-
tors over f-tables, similar in spirit to the relational algebra
ones. Actually, most of them are just generalizations of rela-
tional operators; others are specific of the multidimensional
framework.

The second query language has a graphical nature, and it
is suitable for end-users since it provides a simple way for
specifying queries over a multidimensional database. This
language is based on the observation that there is a natural
way to describe anMD f-table with a graph that we call
f-graph. Consider for instance the SALES f-table defined in
Figure 1; its scheme can be represented by the f-graph re-
ported in Figure 3. In this representation, the ovals denote

AAA
AAASALES

BRAND

CATEGORY

Location:
STORE

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Product Time

Location

Income

Name

CITY

AREA NSalesAddress

Product:
ITEM

Period:
DAY

Figure 3. A graphical representation of an
f-table scheme

levels of dimensions (which are represented by hypernodes
of the given graph), the parallelograms denote level descrip-
tions, and the circles denote measures of f-tables. The cen-
tral node is called thef-nodeand represent the entries of the
f-table. The various nodes of the graph are connected by
directed arcs that represent functional relationships; for in-
stance, an arc between two levels represents a roll-up func-
tion, whereas an arc between the fact node and a measure
node represents the function associating a measure with the
entries of the f-table. Note that the levels on which the f-
table is defined have a further label (the corresponding at-
tribute name) and are emphasized, but also the other levels
of each dimension have been represented. As we will show
shortly, this is useful for specifying roll-up operations. Fi-
nally, for measures and level descriptions we have just indi-

cated the corresponding names.

3.1. Basic Queries

Intuitively, anMD query is a mapping from instances
over an inputMD scheme to instances over an outputMD
scheme. The input and output schemes are defined over the
same dimensions but distinct f-tables. For the sake of sim-
plicity, we shall assume that the output scheme of a query
contains just a single f-table, calledoutput f-table.

As a first example, assume we need to define an f-table
ROMESALES (the output f-table) having scheme

[Period : day;Product: item; Location: store]!
[NSales: numeric]

to represent the number of sales of each item in each day,
only for the stores in Rome. It is easy to see that this can be
obtained from the SALES f-table, having scheme

[Period : day;Product: item; Location: store]!
[NSales: numeric; Income: numeric]

which is therefore the input f-table of the query.
In the algebra, we first need to extend the input f-table

with a new attribute over the levelcity, holding the city in
which each store is located. This operation can be specified
with the specialroll-up operator%

A2:l2

A1 :l1
(F), which extends

an f-table F involving an attributeA1 over a levell1, with a
new attributeA2 over a levell2 � l1, making use of the roll-
up function froml1 to l2. We can then perform a selection
over the new attribute, and finally project out the unneeded
attributes and measures. All of this can be specified with
the following algebraic expression.

�[Period;Product;Location]![NSales](�City=Rome(

%
City:city
Location:store(SALES)))

In the graphical language, we can specify the same query
with a sequence of graphs that denotes a cascade of scheme
restructurings: the first graph, called thesource, describes
the input scheme; the last graph, called thetarget, de-
scribes the output scheme; the intermediate ones (calleds-
graphs) form the query specificationand describe the in-
tended transformations.

In the example above, the source is the graph in Fig-
ure 3, the target is reported on the bottom of Figure 4, and
the query specification is composed by one s-graph only,
shown on the top of Figure 4. In s-graphs, nodes can be
markedandlabeled. Marks specify the levels and the mea-
sures of the graph that follows in the sequence (in our case
of the target). Labels specify selections and renamings: a
label preceded by a comparison predicate specifies a selec-
tion over the corresponding node, whereas a label involving

SALES AAAA
AAAA

BRAND

CATEGORY

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Product Time

Location

Income

Name

CITY

AREA NSales

ROME
SALES

Location

CITY

NSales

AA=Rome

AAAA
AAAAMONTH

SPECIAL

PERIOD
QUARTER

YEAR

Time

BRAND

CATEGORY

Product

AREA

Address

Name

Address

Location:
STORE

Product:
ITEM

Period:
DAY

Location:
STORE

Product:
ITEM

Period:
DAY

Figure 4. A simple graphical query

an arrow specifies a renaming. In our example, we have
marked the levels (store, item, andday) and the measures
(NSales), which are of interest in the output, and we have
specified a selection over the levelcity. The name of the
resulting f-table is ROMESALES. Note that it is possible to
specify a selection over a node that is not marked, since we
assume that the needed roll-up is performed automatically
by the system.

From an operational point of view, we forecast the possi-
bility to specify marks and labels directly over an s-graph of
the sequence forming a query, and the automatic derivation
of the “skeleton” of the s-graph that follows.

3.2. Scalar Functions

An important feature needed in querying numeric data
is the ability to apply scalar functions. A scalar function
makes use of atomic values as input and output (e.g., all
the standard mathematical operators, such as+ and�). For
instance, scalar functions can be used to obtain, from our
sample database, an f-table PROFIT over the scheme

[Period: day;Product: item; Location: store]!
[Gain : numeric]

representing the daily profit, for each store and item. In fact,
this value can be obtained, for each item, by multiplying
the number of pieces sold by a store in a day, by the cost
of the item in the corresponding month (recall that the costs

COST
OF ITEM

BRAND

CATEGORY

QUARTER

YEAR

TimeProduct

PROFIT

AAAA
AAAA
AAAA

SALES

BRAND

CATEGORY

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Product Time

Location

Income

CITY

AREA NSales

Cost

AAAA
AAAA
AAAA

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Time

Gain ← Income − (NSales*Cost)

NSales Cost

BRAND

CATEGORY

Product

Location

CITY

AREA

PROFIT

AAAA
AAAAMONTH

SPECIAL

PERIOD
QUARTER

YEAR

Time

Gain

BRAND

CATEGORY

Product

Location

CITY

AREA

Income

Location:
STORE

Product:
ITEM

Period:
DAY

Location:
STORE

Product:
ITEM

Period:
DAY

Location:
STORE

Product:
ITEM

Period:
DAY

Address

Name

Address

Name

Address

Product:
ITEM

Period:
MONTH

Name

Name

Figure 5. A query involving scalar functions

are given on a monthly basis). To this end, we first need
to roll up the attributePeriod of the f-table SALES to the
level month (defining a new attributeMonth), and then join
the resulting f-table with the f-table COSTOFITEM, having
scheme

[Product: item;Month: month]! [Cost: numeric];

over the common attributesProduct and Month. We can
now compute the desired values by applying the formula
Income� (NSales� Cost) over the result of the join. This
can be done by means of a special operator'M=�(T) that
extends the scheme of the f-table T with a new measure
M obtained by applying the scalar function� to each entry
of T. The result is finally obtained with a projection over
the needed attributes and measures. In sum, we have the
following expression:

�[Period;Product;Location]![Gain]('Gain=Income�(NSales�Cost)(

COST1%
Month:month
Period:day (SALES))):

The same query can be specified in a graphical way as

described in Figure 5. The source (which is not shown) con-
sists of a disconnected graph describing the input f-tables:
SALES and COSTOFITEM. The query specification con-
sists of the two s-graphs depicted on top of Figure 5. The
first one specifies the join of the input f-tables by means of
two arcs that connect the levels over which the join has to
be performed. Also in this case, we assume that the sys-
tem is able to execute automatically the needed roll-up op-
eration over the f-table SALES. The scheme of the result
of the join forms the skeleton of the second s-graph of the
query specification. This s-graph introduces a new measure
(denoted by a dashed arc) that is computed from the other
measures by the corresponding formula; again, marks are
used to specify levels and measures of interest. The result
of this transformation is the target of the query, shown on
the bottom of Figure 5.

3.3. Aggregate Functions

Aggregate functions are of special interest in OLAP sys-
tems: they take as input a collection of values and return an
atomic value. Typical aggregate functions are those of SQL,
that is,min , max, count , sum, andavg , which apply to
columns of relational tables.

An aggregate function can be used, in our running
database, to define the f-table SUMMARY SALES over the
scheme

[Period : month; Location: area;Product: item]!
[TotSales: numeric]

representing summary data of sales, detailed by month,
item, and area. This f-table can be obtained with the al-
gebra by first using the roll-up operator to extend the f-table
SALES with two new attributes holding area and month
of each sale, and then applying thesum aggregate func-
tion to NSaleswhile grouping by month, area, and prod-
uct. The aggregation can be specified with a special opera-

tor
M=g(Mi)
A1;:::;Ak

(T), whose result contains just the attributes
A1; : : : ; Ak of T and the new measureM, obtained by ap-
plying the aggregate functiong to the measureMi of T,
grouping over the attributesA1; : : : ; Ak. We then have the
following expression, in which the outer operator� simply
performs a renaming of attributes:

�Area!Location;Month!Period(
TotSales=sum(NSales)
Month;Area;Product (

%
Area:area
Location:store(%

Month:month
Period:day (SALES))))

The same query can be specified in a graphical way as
described in Figure 6. Again, the source is the f-graph
shown in Figure 3. The query specification consists of a sin-
gle s-graph, reported on top of Figure 6. In this s-graph, the
nodesarea, item, andmonth have been marked to specify

AAA
AAA

BRAND

CATEGORY

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Product Time

Location

Income

CITY

AREA

 TotSales←sum()

SUMMARY
SALES

Location

TotSales

QUARTER

YEAR

Time

BRAND

CATEGORY

Product

SALES

NSales

Location:
STORE

Product:
ITEM

Period:
DAY

Location:
AREA

Product:
ITEM

Period:
MONTH

Address

Name

Name

Figure 6. A query involving an aggregate func-
tion

the desired levels of the target scheme. Since the granular-
ity of these levels is coarser than the levels of the source (the
emphasized ones) this operation also requires the specifica-
tion of an aggregation over the selected measures. This is
done by labeling the nodeNSaleswith the aggregate func-
tion sum and with the nameTotSalesof the resulting mea-
sure. The target of the graphical query is shown on the bot-
tom of Figure 6. Note that, in this f-graph, only the levels
that can be used to specify further aggregations (or selec-
tions) are shown.

Assume now that we want to compute the f-table
MONTHLYPROFIT to represent the monthly profit, detailed
by item, defined over the scheme

[Period : month;Product: item]! [TotGain: numeric]:

To do so, we can use the above defined f-table PROFIT, sum-
marizing by months over all stores, as follows.

�Month!Period(
TotGain=sum(Gain)
Product;Month (%

Month:month
Period:day (PROFIT)))

The same query can be specified in a graphical way as
described in Figure 7. The source of this query is the target
of the query reported in Figure 5, and its specification needs
just one s-graph describing the levels of aggregation, the
aggregate function, and some renaming.

This example shows that both graphical and algebraic
queries can be composed, since the target of a query can be
used as source of another one.

PROFIT

QUARTER

YEAR

Time

MONTHLY

PROFIT

BRAND

CATEGORY

Product

TotGain

AAA
AAA

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Time

Gain

BRAND

CATEGORY

Product

Location

CITY

AREA

TotGain←sum()

Address

Name

Name

Location:
STORE

Product:
ITEM

Period:
DAY

Product:
ITEM

Period:
MONTH

Figure 7. A query over a derived f-table

3.4. Abstraction Queries

In the context of multidimensional data, it is often useful
to transform measures into attributes of f-tables, and vice
versa. This allows the user to change dynamically the per-
spectives under which the analysis is performed. We call
abstractionssuch transformations.

Assume for instance that we intend to define an f-table
TOTALSALES with no measures having scheme

[Prod : item; Loc : store;Per : year;TS: numeric]! []:

This f-table can be obtained from SALES by first summa-
rizing on the number of sales with a roll-up operation, and
then applying the abstraction operator�M (T), which “pro-
motes” the measureM of the f-table T to an attribute. The
resulting expression is the following:

�Year!Period(�TotSales(
TotSales=sum(NSales)
Product;Location;Year (

%
Year:year
Period:day(SALES))))

The same query can be specified in a graphical way as
described in Figure 8. It is possible to see that the graph-
ical specification requires two s-graphs. The first s-graph
specifies the aggregation over the desired levels. The sec-
ond one defines a new dimension starting from a measure of
the intermediate result of the query. The abstraction is spec-
ified by the creation of a new node, defined with respect to
an existing node, that belongs to a new dimension named.
Similarly to the creation of new measures, dimension cre-
ation is denoted by a dashed arc.

AAA
AAA

SALES

BRAND

CATEGORY

MONTH

SPECIAL

PERIOD
QUARTER

YEAR

Product Time

Location

Income

CITY

AREA NSales

SALES

Location

CITY

AREA

Time

BRAND

CATEGORY

Product

AAAA
AAAA

TOTAL

SALES

Location

CITY

AREA

Time

BRAND

CATEGORY

Product
AAAA
AAAATotSales

←YSalesYSales

Location:
STORE

Product:
ITEM

Period:
DAY

Name

Address

YSales←sum()

Location:
STORE

Product:
ITEM

Period:
YEAR

Name

Address

Location:
STORE

Product:
ITEM

Period:
YEAR

Name

Address TotSales:
NUMERIC

Figure 8. An abstraction query

4. The Algebraic Query Language

In this section we present more formally theMD alge-
bra. Similarly to what happens with the relational algebra,
the operators of theMD algebra are closed, that is, they
apply to f-tables and produce an f-table as result. In this
way, the various operators can be composed to form thef-
expressionsof the language.

It is worth noting that, to obtain closed operators, each
f-expression must satisfy afunctional dependencyfrom its
attributes to its measures. To guarantee this property, suit-
able syntactical conditions need to be introduced over some
operator.

F-expressionsare defined recursively as follows.

F-tables. If F is an f-table having scheme[A1; : : : ; An]!
[M1; : : : ;Mm], thenF is an f-expression over the same
scheme asF , that is, an f-expression over the attributes
A1; : : : ; An and the measuresM1; : : : ;Mm.

The result ofF is, trivially, F itself.

Cartesian product. If E, E0 are f-expressions hav-
ing schemes [A1; : : : ; An] ! [M1; : : : ;Mm] and
[A01; : : : ; A

0

n0] ! [M 0

1; : : : ;M
0

m0], respectively, over dis-
joint attributes and measures, thenE�E0 is an f-expression
with schema over the attributesA1; : : : ; An; A

0

1; : : : ; A
0

n0

and measuresM1; : : : ;Mm;M
0

1; : : : ;M
0

m0 .
As usual, the result contains an entry for each pair of

entries in the two f-expressions, having as measure the jux-
taposition of the two corresponding measures.

Natural join. If E and E0 are f-expressions over
[A1; : : : ; Ak; Ak+1; : : : ; An] ! [M1; : : : ;Mm] and
[A1; : : : ; Ak; A

0

k+1; : : : ; A
0

n0] ! [M 0

1; : : : ;M
0

m0], respec-
tively, that is, havingA1; : : : ; Ak as common attributes
(defined over the same levels) and no common measures,
then E1E0 is an f-expression with schema over the
attributesA1; : : : ; Ak; Ak+1; : : : ; An; A

0

k+1; : : : ; A
0

n0 and
measuresM1; : : : ;Mm;M

0

1; : : : ;M
0

m0 .
The result has an entry for each pair of entries in the

two f-expressions with the same values on the common at-
tributes; the corresponding measures are the juxtaposition
of the measures of the original entries.

Roll up. Let E be an f-expression having scheme
[A1; : : : ; An] ! [M1; : : : ;Mm], and letAi : l be an at-
tribute ofE. If A0 is an attribute name andl0 is a level such
thatl rolls up tol0, then%

A0
:l0

Ai:li
(E) is an f-expression having

scheme[A1; : : : ; An; A
0]! [M1; : : : ;Mm].

The semantics of this f-expression is defined as follows.
If is an entry ofE, and(Ai) rolls up too0 in the levell0,
then the result contains an entry0 obtained by extending
with the attributeA0 in such a way that0(A0) = o0.

Note that the result of this operation satisfies the func-
tional dependencyAi ! A0.

Level description. LetE be an f-expression having scheme
[A1; : : : ; An] ! [M1; : : : ;Mm], and letAi : l be an at-
tribute ofE. If A is an attribute name and� is a level de-
scription of the levell, then�

A=�(Ai)(E) is an f-expression
having scheme[A1; : : : ; An; A]! [M1; : : : ;Mm].

The semantics of this f-expression is defined as follows.
If is an entry ofE, then the result contains an entry0

obtained by extending with the attributeA in such a way
that0(A) = �((Ai)).

Note that the result of this operation satisfies the func-
tional dependencyAi ! A.

Scalar function application. If E is an f-expression over
[A1; : : : ; An]! [M1; : : : ;Mm],M is a measure name, and
� is a scalar formula (defined next), then'M=�(E) is an f-
expression over the same attributes ofE and over the mea-
suresM;M1; : : : ;Mm.

A scalar formulaover an f-table scheme is an expres-
sion built from attributes, measures, and constants by us-

ing scalar functions taken from a vocabularyF of available
functions.

The result contains the same entries asE. The measures
associated with an entry are the same asE, plus the new
measureM , having value�().

Renaming. If E is an f-expression having scheme
[A1; : : : ; An] ! [M1; : : : ;Mm], Ai is an at-
tribute of E, and A is a new attribute name, then
�Ai!A(E) is an f-expression over the scheme
[A1; : : : ; Ai�1; Ai+1; : : : ; An; A]! [M1; : : : ;Mm].

The result contains an entry0 for each entry in E,
where0 is obtained from by renaming the attribute name
Ai intoA.

The result satisfies the functional dependencies ofE, re-
named accordingly.

Selection. If E is an f-expression having scheme
[A1; : : : ; An] ! [M1; : : : ;Mm] and# is a condition (de-
fined next), then�#(E) is an expression over the same
scheme asE.

A conditionover an f-table scheme is a boolean expres-
sion of the formt�t0, where: t and t0 are attributes, mea-
sures, or constants; and� is a built-in comparison predicate
such as=, 6=, >, etc.

The result contains an entry ofE and the corresponding
measures, only they satisfy the condition#.

In general, the result satisfies the same functional depen-
dencies asE. However, if the condition# has the form
Ai = Aj, whereAi andAj are attributes, then the result
satisfies also the functional dependenciesAi ! Aj and
Aj ! Ai.

Simple projection. If E is an f-expression having scheme
[A1; : : : ; An] ! [M1; : : : ;Mm], h � n andk � m, and
E satisfies the functional dependencyA1; : : : ; Ah ! Ai,
for each i > h, then�[A1 ;:::;Ah]![M1 ;:::;Mk](E) is an f-
expression over the scheme[A1; : : : ; Ah]! [M1; : : : ;Mk].

The result contains an entry0 for each entry of E,
which is the restriction of to the attributesA1; : : : ; Ah;
the measures associated with0 are the restriction of the
measures associated with toM1; : : : ;Mk.

It is worth noting that, because of the functional depen-
dencies satisfied byE, the result contains the same number
of entries asE.

Aggregation. Let E be an f-expression having scheme
[A1; : : : ; An]! [M1; : : : ;Mm]. Let k � n, N1; : : : ; Nl be
measure names, andg1; : : : ; gl be aggregate function from

F . Then
N1=g1(Mi1

);:::;Nl=gl(Mil
)

A1;:::;Ak
(E) is an f-expression

over the scheme[A1; : : : ; Ak]! [N1; : : : ; Nl].
The semantics is as follows. Let be a tuple over the

attributesA1; : : : ; Ak, and letT be the set of entries inE
whose restriction toA1; : : : ; Ak coincides with. If T is
not empty, then is an entry of the result; the value for

the measureNj associated with is the result of applying
the aggregate functiongj to the multiset of measuresMij

associated with the entries inT , for 1 � j � l.

Abstraction. If E is an f-expression with scheme
[A1; : : : ; An] ! [M1; : : : ;Mm] and k � m,
then �M1;:::;Mk

(E) is an f-expression over
[A1; : : : ; An;M1; : : : ;Mk]! [Mk+1; : : : ;Mm].

The result contains an entry0 for each entry of
E. The entry0 is obtained by extending with the at-
tributesM1; : : : ;Mk, which take their values from the cor-
responding measures. The measures associated with0

are the restriction of the measures associated with to
Mk+1; : : : ;Mm.

The result satisfies the functional dependency
A1; : : : ; An !M1; : : : ;Mk.

Definition 4.1 (Algebraic Query) An MD algebraic
queryQ over anMD schemeS is an f-expression over the
f-tables ofS.

5. The Graphical Query Language

We now present the syntax and the semantics of the
graphical query language for theMDmodel. We first show
how it is possible to associate a graph with an f-table, which
we call its f-graph.

Definition 5.1 (F-graph) Let F [A1 : l1; : : : ; An : ln] !
[M1 : l01; : : : ;Mm : l0m] be an f-table scheme over a set
D of dimensions. Thef-graphof F is an directed acyclic
graphgF , such that:

� there is just one node ingF with no incoming arc,
called thef-nodeof gF ; all the other nodes are asso-
ciated with some level ofD: if a noden is associated
with a levell we say thatn is overl;

� for each attributeAi of F , 1 � i � n, there is a node
ni in gF , namedAi and overli, and there is an arc
from the f-node toni — these nodes are called thea-
nodesof gF ;

� for each measureMj of F , 1 � j � m, there is a
noden0j in gF , namedMj and overl0j , and there is an
arc from the f-node ton0j — these nodes are called the
m-nodesof gF ;

� for each a-noden over a levell in a dimensiond 2 D
there is also a node ingF for each levell0 6= l ofd such
that l � l0 — these nodes are calledr-nodesof gF and
form ag-dimension overd;

� for each noden over a levell having a level descrip-
tion �(l) : l0, there is a noden0 in gF over l0 and an
arc fromn to n0 — these nodes are calledd-nodesof
gF ;

� within a g-dimension overd there is an arc ingF from
a noden1 over a levell1 to a noden2 over a level
l2 � l1 if and only ifl1 immediately precedesl2 in the
partial order defined overd.

In an f-graph, we also calll-nodesall the nodes different
from the f-node.

Example 5.2 The f-node of the f-graph in Figure 3 is the
one named SALES (we have used the convention to name
the f-node with the name of the corresponding f-table). This
f-graph has three g-dimensions (overProduct, Time, and
Location), three a-nodes (namedLocation, Product, and
Period over Store, Item, and Day, respectively), two m-
nodes (namedNSalesandIncome), and two d-nodes (named
AddressandName). The others nodes are r-nodes.

We now introduce the notion of graphical query specifi-
cation (s-graph for short) that is built over a set of f-graphs,
as follows.

Definition 5.3 (S-graph) Let S be a non-empty set of f-
graphs. Ans-graphGS over S is a labeled graph, such
that:

� GS has all the nodes and arcs of the f-graphs inS, that
is, the f-graphs inS are disjoint subgraphs ofGS ;

� GS can have new m-nodes: for each of them there is a
new arc from an f-noden to it, labeled with an expres-
sion of the formM �, whereM is a name and� is
a scalar formula over the names of the m-nodes ofn;

� GS can have new arcs between pairs of l-nodes over
the same level, each of which is labeled with a built-in
comparison predicate;

� an l-node inGS over a levell can be labeled with an
expression of the form�v, where� is a comparison
predicate andv is a constant in the domain ofl;

� an l-node inGS can be labeled with an expression of
the formA , whereA is a new name;

� an m-node inGS can be labeled with an expression of
the formM g(), whereM is a new name andg is
an aggregate function;

� GS can have new a-nodes: for each of them there is
a new arc from an f-noden to it, a new g-dimension
for it, and it is labeled with an expression of the form
A B, whereA is a new name andB is a name of
an m-node ofn;

� an l-node inGS can bemarked, with the limitation
that there is at most one marked l-node for each g-
dimension.

An s-graph specifies a restructuring operation over f-
graphs. This operation is captured by two mappings:� and
�. The former is a mapping from s-graphs to f-graphs and
specifies the structure of the result of the restructuring. The
latter is a mapping between f-table instances that specifies
the underlying data transformation. The two mappings are
defined below; because of space limitation, some technical
details are omitted.

LetGS be an s-graph over a setS of f-graphs:�(GS) is
an f-graph defined as follows.

� �(GS) contains one f-node;

� there is one m-node in�(GS) for each marked m-node
of GS;

� there is one a-node in�(GS) for each marked a-nodes
of GS;

� the r-nodes, d-nodes, and g-dimensions in�(GS) are
defined from m-nodes and a-nodes as in Definition 5.1;

� the m-nodes and a-nodes in�(GS) have the same
names and levels of the corresponding nodes ofGS ,
except when they are labeled: in this case, a node la-
beledA is namedA in �(GS) and is over a level
that depends on.

Now, letGS be an s-graph over a setS of f-graphs: the
mapping�(GS) takes as input a set of instances over the
schemes described byS and returns an instance over the
scheme described by�(GS). This mapping is defined us-
ing theMD algebra: intuitively, each element ofGS cor-
responds to the application of an algebraic operator, as fol-
lows.

� The presence of several f-graphs inGS describes a
cartesian product over the corresponding f-tables;

� the presence of m-nodes inGS not occurring inS de-
scribes a scalar function application over the corre-
sponding measures, as specified by their labels;

� the presence of arcs inGS not occurring inS and l-
nodes labeled by comparison predicates describes a se-
lection, possibly followed by a level description and a
roll-up;

� the presence of l-nodes inGS labeled by expressions
of the formA describes a renaming;

� the presence of l-nodes in m-nodes inGS labeled by
expressions of the formM g() describes a roll-up
followed by an aggregation (marked nodes specify the
desired level of aggregation);

� the presence of a-nodes inGS not occurring inS de-
scribes an abstraction;

� finally, the presence of marked l-nodes inGS may
describe a projection over the specified attributes and
measures.

We are now ready to define the notion of query.

Definition 5.4 (Graphical Query) An MD graph-
ical query Q is a sequence of s-graphsGQ =
hGs; G1; : : : ; Gk; Gti, where k > 0. The s-graphGs

is called thesourceof GQ and is composed by a finite set of
f-graphs. The s-graphGt is called thetargetof GQ and is
composed by one f-graph only. The sequenceG1; : : : ; Gk

is calledquery specification. Each s-graphGi in the query
specification is over the f-graph defined by the previous
s-graphGi�1. The result of the query is defined as the
composition of the mappings�(Gi).

Example 5.5 Consider the graphical query in Figure 5.
The source of this query is composed by the f-graphs cor-
responding to the f-tables SALES (shown in Figure 3) and
COSTOFITEM. The query specification is composed by two
s-graphs. The mapping defined by the first one corresponds
to the algebraic expressionE1:

�[S.Period;S.Product;Location]![Cost](

�S.Product=C.Product;C.Period=Month(

COST� %
Month:month
Period:day (SALES))):

The second s-graph defines the mappingE2:

�[Period;Product;Location]![Gain]('Gain=Income�(NSales�Cost)(E1))

The composition of these two expressions define the result
of the query, whose scheme is described by the target of the
graphical query shown on the bottom of Figure 5.

The given definitions suggest that theeach graphical
query can be expressed by anMD algebraic expression.
Actually, we can also show that the converse holds. We
then have the following result.

Theorem 5.6 TheMD algebraic and graphical languages
have the same expressive power.

6. Related Work

The term OLAP has been recently introduced to char-
acterize the category of analytical processing over large,
historical databases (data warehouses) oriented to decision
making. Further discussion on OLAP, multi-dimensional
analysis, and data warehousing can be found in [5]. A com-
parison between OLAP concepts and the area of statistical
databases is given in [8].

The multidimensional data model illustrated in this pa-
per has been proposed in [2, 3]. In the previous papers we
have proposed a design methodology for multidimensional
databases [3], and we have presented a declarative query
language and studied its expressiveness [2]. The present pa-
per is devoted to the investigation of two further paradigms
for querying OLAP databases.

Many authors [1, 4, 7] claim that SQL is unsuited to
data-analysis applications, since some aggregate and group-
ing queries are difficult to express and optimize. They thus
consider the problem of extending SQL with specific ag-
gregation and analysis-oriented operators. Gray et al. [7]
proposedcube as an operator generalizinggroup by .
Chatziantoniou and Ross [4] extend both SQL and the re-
lational algebra with an operator, which deals with “aggre-
gation variables”, to succinctly express common queries.
Agrawal et al. [1] have proposed a framework for study-
ing multidimensional databases, consisting of a data model
based on the notion of multidimensional cube, and a pow-
erful algebraic query language. Many of the features con-
sidered in such proposals can be expressed in our languages
using a suitable collection of scalar and aggregate functions.

Gebhardt et al. [6] propose a tape-based model of multi-
dimensional data, together with an operational framework
for visualization and querying that makes use of opera-
tions on tapes (e.g., scrolling and intersection) as graphical
metaphors. This framework yields a way to build work-
sheets from operational sources and define their visualiza-
tion. Thus, it can be viewed as a graphical language having
visual and (simple) restructuring capabilities (essentially
roll-up and group-by operations). Our approach is instead
focused on data restructuring and therefore the languages
we propose are more powerful in expressing multidimen-
sional queries. Moreover, our graphical language is based
on different metaphors (graphs and trees) that, we believe,
are easier to understand for non-expert users.

The aspect of manipulating multidimensional databases
is covered by commercial OLAP systems essentially in a
pragmatic way, providing the users with powerful visual-
ization tools, and with query tools having various levels of
capabilities. Notable examples are MetaCube [9] and Or-
acle Express [10]. Both of them provide graphical inter-
active interfaces in which, again, visual and restructuring
capabilities are mixed. The queries that can be expressed
through these interfaces apply to single fact tables and are
generally quite simple: roll-up, drill-down, slice and dice,
pivoting. All of them are based on intuitive concepts and
rely on informal definitions. Our approach is different: we
have first defined an algebra that allows us to define multi-
dimensional operations in a precise way, and we have then
developed a graphical language that is based on the algebra
and so have a clear semantics. The resulting language is
in general more expressive since allows the user to express

complex queries possibly involving several f-tables. More-
over, the metaphors we have used are more abstract and so
more natural for naive users than the ones used in the above
systems, which are mainly based on nested folders.

7. Conclusion

In this paper we have investigated a framework for the
manipulation of multidimensional databases. Our proposal
relies onMD, a model for multidimensional data, which
provides a clear separation between practical and concep-
tual aspects of OLAP systems. We have studied, in this
context, two query languages, over different paradigms,
that can be effectively used for querying multidimensional
databases, demonstrating thatMD is well-suited for this
purpose, since it allows the user to disregard implementa-
tion aspects. The first language is based on an algebra and
provides an effective way to manipulate multidimensional
data in a procedural fashion. The second query language has
a graphical nature, and it is suitable for end-users since it
provides a simple tool for specifying queries over an OLAP
database. We have also shown that the two languages have
indeed the same expressive power.

References

[1] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidi-
mensional databases. In13th IEEE Int. Conf. on Data Engi-
neering, pag. 232–243, 1997.

[2] L. Cabibbo and R. Torlone. Querying multidimensional
databases. InSixth Int. Workshop on Database Program-
ming Languages (DBPL’97), Springer-Verlag, 1997.

[3] L. Cabibbo and R. Torlone. A logical approach to mul-
tidimensional databases. In6th Int. Conf. on Extending
Database Technology, pag. 183–197, 1998.

[4] D. Chatziantoniou and K. Ross. Querying multiple features
of groups in relational databases. In22th Int. Conf. on Very
Large Data Bases, pag. 295–306, 1996.

[5] S. Chaudhuri and U. Dayal. An overview of Data Ware-
housing and OLAP technology.ACM SIGMOD Record,
26(1):65–74, 1997.

[6] M. Gebhardt, M. Jarke, and S. Jacobs. A toolkit for negoti-
ation support interfaces to multi-dimensional data. InACM
SIGMOD Int. Conf. on Manag. of Data, pag. 348–356, 1997.

[7] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
Cube: a relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. In20th IEEE Int. Conf. on
Data Engineering, pag. 152–159, 1996.

[8] A. Shoshani. OLAP and statistical databases: Similari-
ties and differences. In16th ACM Symp. on Principles of
Database Systems, pag. 185–196, 1997.

[9] MetaCube Explorer User Guide. Informix Software Inc.,
http://www.informix.com.

[10] Oracle OLAP products: adding value to a data warehouse.
Oracle White Paper,http://www.oracle.com.

