Luca Cabibbo

NoSQL Database Design
for Next-Generation Web
Applications

Joint work with Francesca Bugiotti,
Paolo Atzeni, and Riccardo Torlone

NoSQL Database Design

R_ - Introduction

o NoSQL datastores are a new generation of distributed database
systems — they have been designed to manage large data sets
distributed over many servers

. wriak CW \(
ek Tokyo X {!}
Cabinet gi52- Tirr il

Cassandra
~ /——ﬁ N £
'Scalaris K: (Smazm N H
i _v“‘ma.?.qn wamoDBJ_,:(
o " e s T Couchbase

ORACLE’

NOSQL DATABASE AP ACHE »
[OmongoDs PEHEE e

= a promise of NoSQL database technology is to support the
development of next-generation web applications

= in this context, we are interested in NoSQL database design
= we also present an abstract data model for NoSQL databases

NoSQL Database Design

e Hie
L
i

o NoSQL database systems

o NoAM — an abstract data model for NoSQL databases

NoSQL database design for next-generation web applications

O

O

The NoAM approach to NoSQL database design
= overview

aggregates and aggregate design

= aggregate partitioning

= a language for data representations

implementation

= conclusion

ONDM (Object-NoSQL Datastore Mapper)
= architecture
= conclusion

O

O

A case study in NoSQL database design

NoSQL Database Design 3

N

#8 _* NoSQL database systems

&

o NoSQL datastores are a new generation of distributed database
systems

= they have been designed to support the needs of an increasing
number of modern applications — for which traditional database
technology is unsatisfactory

= a main requirement for these systems is the ability to manage
large data sets distributed over many servers — whereas
relational DBMSs are not designed to be run on clusters

NoSQL Database Design 5

\ NoSQL and heterogeneity

: ,.r, .""';,
o The NoSQL landscape is characterized by a high heterogeneity

= http://nosqgl-database.org/ lists 150 non-relational databases

= they have different data models and different APIs to access
the data — as well as different consistency and durability
guarantees

o We focus here on three main categories of NoSQL databases
= key-value stores
= a database is a collection of key-value pairs
= document stores
= a database is a collection of documents
= extensible record stores
= data is organized as tables of extensible records
= these categories include more than 70 systems

NoSQL Database Design 7

\Key-value stores

o In a key-value store, a database is a schema-less collection of
key-value pairs

= values are usually binary strings, opaque to the datastore —
even if some systems have interpreted values, such as
counters, lists, or hashes

= programmer-defined keys are either binary strings or structured
keys — in some systems, part of the key is used to control data
distribution

= simple data access operations — put, get, and delete — over an
individual key-value pair or a group of related key-value pairs

g s 0
Tokyo
Cabixet 3;., iEi m - ORACLE'
“JScalaris k

'-ﬁ'"q NOSQL DATABASE

NoSQL Database Design 8

\ Key-value stores: examples

key

username : mary

] firstName : Mary a hash value
Player:mary lastName : Wilson

e I'edIS games:{.:..}

username : rick
firstName : Ricky
Player:rick lastName : Doe
score : 42
games :{...}

key

[Player/mary/- { “username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : [...] }
[Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : [...] }
key .
ORrRACLE

[Player/mary/-/username mary NOSQL DATABASE

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games [...]

\ Document stores

o In a document store, a database is a set of documents
= each document has a complex value and an identifier

= documents are composed of fields, which are dynamically
defined for each document at runtime — each field can be a
scalar value, a list, or a document itself

= documents are organized in collections

= the structure of documents is not opaque to datastores — they
create indexes on documents and support content-based

querying
sl
{ } ColichDB
el

Couchbase ‘ mongoDB

NoSQL Database Design 10

\Document stores: example

collection Player

{
“id”: “mary”,
“username” : “mary”,
mary “firstName” : “Mary”,
“lastName” : “Wilson”,
“‘games” : [{ “game” : “Game:2345”, “opponent” : “Player:rick” },
{“game” : “Game:2611”, “opponent” : “Player:ann” }]
}
{
“_id” : “rick”,
“username” : “rick”,
“firstName” : “Ricky”,
rick “lastName” : “Doe”,
“score” : “42”,
“‘games” : [{ “game” : “Game:2345”, “opponent” : “Player:mary” },
{ “game” : “Game:7425”, “opponent” : “Player:ann” },
{ “game” : “Game:1241”, “opponent” : “Player:johnny” }]
}

. mongoDB

NoSQL Database Design

o An extensible record (or column-family) store organizes data
around tables, records/rows, and columns

= a relaxation of the relational model, in which databases are
mostly schema-less — since each row can have its own set of
columns

= each table designates a primary key — which comprises the
only mandatory attributes of the table — in some systems, part
of the primary key is used to control data distribution

f\ .
- M0 HYPERTABLE
fsmazon DynamoDB)r
_ APACHE
Cassandra HEASE

NoSQL Database Design

\Extensible record stores: example

table Player
@MMM@M_
mary Mary Wilson {.}
rick Ricky Doe 42 {...} {...} {.}

X /“\ =

2 amazon -
webservices
(#mazen DynamoDB)
=~ P
P &

NoSQL Database Design 13

\ * NoAM - an abstract data model

for NoSQL databases

o The NoSQL landscape is characterized by a high heterogeneity

= however, “the availability of a high-level representation of the
data at hand, be it logical or conceptual, remains a fundamental
tool for developers and users, since it makes understanding,
managing, accessing, and integrating information sources
much easier, independently of the technologies used”

o To this end, we propose NoAM (NoSQL Abstract Model) — an
abstract and system independent data model for NoSQL
databases

= NoAM aims at exploiting the commonalities of their various data
models — but it also introduces abstractions to balance their
differences and variations

NoSQL Database Design 14

\ The NoAM abstract data model

a Main commonalities of their various NoSQL data models

= NoSQL datastores share the common provision of having a
modeling data element that is a distribution, access and
manipulation unit (DAM unit)

= a data access unit

- more precisely, a maximal unit of consistency/atomic data
access and manipulation

= a unit of distribution

- each DAM unit is located on a single node of the cluster —
but in general different DAM units are distributed among
the nodes of the cluster

= in the various systems, a DAM unit can be
= a record/row — a document — a group of key-value pairs
sharing part of the key

= in NoAM, a DAM unit is called a block

NoSQL Database Design 15

o Main commonalities of their various NoSQL data models

= NoSQL datastores also offer the ability to access just some
parts of a DAM unit — they have a modeling data element that is
a “smaller” data access unit (SDA unit)

= in the various systems, an SDA unit can be
= a column — a field — an individual key-value pair
= in NoAM, a SDA unit is called an entry

= moreover, many datastores provide a notion of collection of
data access units

= in the various systems, a collection can be
= a table — a document collection

= in NoAM, a collection of DAM units (blocks) is called a
collection

NoSQL Database Design 16

\\ The NoAM abstract data model

o The NoAM abstract data model

= a database is a set of collections — each collection has a
distinct name

= a collection is a set of blocks — each block is identified in its
collection by a block key

= a block is a non-empty set of entries
= each entry is a pair (ek,ev)
= ek is the entry key — unique within its block

= eV is a value (either a scalar or a complex value), called the
entry value

NoSQL Database Design 17

username “mary”
firstName “Mary”

mary lastName “Wilson”
games|0] (game : Game:2345, opponent : Player:rick)
games[1] { game : Game:2611, opponent : Player:ann)
username “rick”

firstName “Ricky”

lastName “Doe”
ik score 42

games[0] (game : Game:2345, opponent : Player:mary)

games[1] (game : Game:7425, opponent : Player:ann)

games[2] ({ game : Game:1241, opponent : Player:johnny)

Game id 2345
firstPlayer Player:mary
2345 secondPlayer Player:rick

rounds[0] (moves: ..., comments : ...)
rounds|[1] (moves: ..., actions : ..., spell : ...)

NoSQL Database Design 18

“\ * NoSQL database design for

hext-generation web applications

o We consider here NoSQL database design — the problem of
representing persistent data of an application in a target NoSQL
database

= NoSQL databases are claimed to be “schema-less”

= however, the data of interest do show some structure, and
decisions on the organization of data are required

= specifically, to map application data to the modeling
elements (collections, tables, documents, key-value pairs)
available in the target datastore

NoSQL Database Design 19

o Consider a fictious online, web 2.0 game — e.g., some variant of
Ruzzle — which should manage various application objects,
including players, games, rounds, and moves

: Inf username = "mary" username = "rick" / games[2]
firstName = "Mary" firstName = "Ricky"
lastName = "Wilson" lastName = "Doe"
games[0]
games[0] games[1]
firstPlayer secondPlayer
—| : fi 2345 : Game : fi
opponent game game opponent
id = 2345

moves[0] moves|[0]

NoSQL Database Design 20

(A running example

o Consider a fictious online, web 2.0 game — e.g., some variant of
Ruzzle — which should manage various application objects,
including players, games, rounds, and moves

= assume for example that the target database is an extensible
record store

= what records (and tables) should we use?
= a distinct record for each different application object?
= or should we use each record to represent a group of related
objects? what is the grouping criterion?
= what columns should we use?
= a distinct column for each object field?

= or should we use each column to represent a group of
related fields? what is the grouping criterion?

NoSQL Database Design 21

-
F

i

\'\ NoSQL database design

o In NoSQL database design
= decisions on the organization of data are required, in any case

= these decisions are significant — as the data representation
affects major quality requirements — such as scalability,
performance, and consistency

= a randomly chosen data representation may not satisfy the
needed qualities

= how should we make design decisions to indeed support the
qualities of next-generation web applications?

NoSQL Database Design 22

\ Next-generation web applications

o We focus here on database design for next-generation web
applications — also called scalable web applications, or scalable
simple OLTP-style applications

= foremost requirements of these applications
= data of interest are large and have a flexible structure
= data access is based on simple read-write operations

= horizontal scalability — data should be distributed over a
cluster of many servers

= high availability and good response time

= relaxed consistency guarantees — general ACID transactions
are typically unnecessary — however, a certain degree of
consistency is required, to easy application development —
e.g., eventual consistency or BASE

NoSQL Database Design 23

-
s

i
o State-of-the-art in NoSQL database design
= a lot of best practices and guidelines

= but usually related to a specific datastore or class of
datastores

= neither a systematic methodology nor a high-level data model
= as in the case of relational database design

g1 '\ State of the art

NoSQL Database Design 24

\ * The NoAM approach to

NoSQL database design

o We propose the NoAM approach to NoSQL database design
= tailored to the requirements of next-generation web applications
= based on the NOAM abstract data model for NoSQL databases

= a high level/system independent approach — the initial design
activities are independent of any specific target systems

= a NoAM abstract database is first used to represent the
application data

= the intermediate representation is then implemented in a
target NoSQL datastore, taking into account its specific
features

NoSQL Database Design 25

\ - Overview

o The NoAM approach to NoSQL database design is based on the
following main phases

= aggregate design — to identify the various classes of aggregate
objects needed in the application

= this activity is driven by use cases (functional requirements)
and scalability and consistency needs

= aggregate partitioning — aggregates are partitioned into smaller
data elements

= driven by use cases and performance requirements

= high-level NoSQL database design — aggregate are mapped to
the NOAM intermediate data model

= Iimplementation — to map the intermediate representation to the
specific modeling elements of the target datastore

NoSQL Database Design 26

\\ Application data

o We start by considering application data objects...

games|[1] mary : Player
H fi username = "mary"
firstName = "Mary"

lastName = "Wilson"

username = "rick" | —" games[2]

firstName = "Ricky"

lastName = "Doe"

games[0]
games[0] games[1]
firstPlayer secondPlayer
—| : f 2345 : Game : f
opponent game game | opponent
id = 2345
rounds[0] rounds[1]
moves[0] moves[1] moves|[0]
| : Move | | : Move | | : Move
NoSQL Database Design 27

games[1]

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

games[0]

firstPlayer

y

rick : Player

username = "rick” [—
firstName = "Ricky"
lastName = "Doe"
score =42

games[2]

games|[0] games[1]

opponent game

moves[0]

2345 : Game

[amemnfo |

moves[1]

id = 2345

game L 1 opponent

moves|[0]

NoSQL Database Design 28

\Aggregates as complex-value objects

0 ... we consider aggregates as complex-value objects...

Player:mary : ¢
username : "mary",
firstName : Player:rick : {
lastName : username : "rick",
games : { firstName : "Ricky",
(gar lastName : "Doe",
(gam score : 42,
} games : {
) (game : Game:2345, opponent : Player:mary),

(game : Game:7425, opponent : Player:ann),
(game : Game:1241, opponent : Player:johnny)

} Game:2345 : (
) id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,

rounds : {
{moves : ..., comments : ...),
(moves : ..., actions : ..., spell : ...)
}
)
NoSQL Database Design 29

0 ... we partition these complex values (decisions needed!) ...

Player:mary : ¢
username : "mary", |
;—_Iﬁgﬂ Player:rick : (
[fastName : username : "rick",
games :{ firstName : "Ricky",
(gamr lastName : "Doe",
LK gam score : 42,
} games : {
) (game : Game:2345, opponent : Player:mary),

(game : Game:7425, opponent : Player:ann),
| game : Game:1241, opponent : Player:johnny) |

} Game:2345 : (
) id : "2345"
firstPlayer : Player:mary,
secondPlayer : Player:rick,

rounds : {
{moves : ..., comments : ...),
{(moves : ..., actions: ..., spell:...)
}

NoSQL Database Design 30

\Data representation in NoAM

o ... and represent them into an abstract data model for NoSQL
databases (consequence of decisions) ...

Player username “mary’
firstName “Mary”
username “rick”

firstName “Ricky”
lastName “‘Doe”

rick score 42
games[0] (game : Game:2345, opponent : Player:mary)
games[1] (game : Game:7425, opponent : Player:ann)
games[2] (game : Game:1241, opponent : Player:johnny)

Game id 2345
firstPlayer Player:mary
2345 secondPlayer Player:rick
rounds[0] (moves : ..., comments: ...)
rounds|[1] (moves: ..., actions : ..., spell : ...)
NoSQL Database Design 31

\Implementation

o ... and finally we map the intermediate representation to the data
structures of the target datastore (the approach specifies how)

table Player
@MMM!@M“
mary Mary Wilson {-}
rick Ricky Doe 42 {...} {-} {...}
table Game
“mmm—
2345 Player:mary Player:rick

l/\
[_\

2 amazon -
webservices
(fxmazon DynamoDB)
- g

—

NoSQL Database Design 32

Implementation

o ... and finally we map the intermediate representation to the data
structures of the target datastore (the approach specifies how)

key
/Player/mary/-/username mary
/Player/mary/-/firstName Mary
/Player/mary/-/lastName Wilson
/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }
/Player/mary/-/games[1] {“game” : “Game:2611”, “opponent” : “Player:ann” }
/Games/2345/-/id 2345
/Games/2345/-/firstPlayer Player:mary
/Games/2345/-/secondPlayer Player:rick
/Games/2345/-/rounds[0] {...}
/Games/2345/-/rounds[1] {...}
ORACLE
NOSQL DATABASE
NoSQL Database Design]

\\ - Aggregates and aggregate design

o In our approach, we consider application data arranged in
aggregates

= the notion of aggregate comes from Domain-Driven Design
(DDD) — a popular object-oriented design methodology — and
from principles in the design of scalable applications

= aggregate design affects scalability and the scope of atomic
operations — and therefore, the ability to support relevant
integrity constraints

NoSQL Database Design 34

\ Design of scalable applications

o The design of scalable applications is discussed in a seminal
paper by Pat Helland — Life beyond distributed transactions: an
apostate’s opinion, CIDR 2007

= data should be organized as a set of complex-value objects
with unique identifiers — called entities or aggregates — each
aggregate is a “chunk” of related data, and is intended to be a
unit of data access and manipulation

= aggregates should govern data distribution — aggregates are
distributed among the nodes of the cluster, but each aggregate
is located on a single node

= atomic transactions can not span multiple aggregates — to avoid
the coordination overhead required by distributed transactions

= operations spanning multiple aggregates should be
implemented as multiple operations, each over a single
aggregate — using asynchronous messages and eventual
consistency

NoSQL Database Design 35

\ Aggregates in Domain-driven design

o Domain-Driven Design (DDD, Eric Evans, 2003) is also based on
a similar notion of aggregate — DDD gives us other insights on
aggregate design

= each aggregate is a group of application objects (entities and
value objects) rooted in an entity

= an entity is a persistence object that has independent
existence and a unique identifier

= a value object is a persistent object, without an own identifier
= aggregate boundaries govern distribution and transactions
= each aggregate should be

= large enough, to accommodate all the data involved by some
Integrity constraints or other business rules

= as small as possible, to reduce concurrency collisions — to
support performance and scalability requirements

NoSQL Database Design 36

o Aggregates in our running example are players and games

= but rounds are not — to support an integrity constraint of the
game

y

rick : Player

username = "rick” [—
firstName = "Ricky"
lastName = "Doe"
score =42

games[1] mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

games[2]

games|[0] gamesl[1]

games[0]

firstPlayer

game L opponent

opponent game

2345 : Game

id = 2345

moves|[0]

NoSQL Database Design 37

o At the application level, data is organized in aggregates

= each aggregate object is can be considered a complex-value
object, with a unique identifier

= a set of aggregate objects is a class

= a set of class form an application dataset
Player:mary : ¢

u_ser Player:rick : {
first! R
last! gsername. npk,
firstName : "Ricky",
gam lastName : "Doe",
SCor Game:2345 : ¢
} gam id : "2345",
) firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {
} {moves : ..., comments : ...),
) (moves : ..., actions : ..., spell : ...)
}

NoSQL Database Design 38

\\ Aggregates in NoSQL db design

o To summarize, aggregates have the following characteristics
= an aggregate is a complex-value object

= each aggregate is a unit of data access and atomic
manipulation

= aggregates govern data distribution

o In NoSQL database design, we should map each aggregate to a
data modeling element having analogous features

NoSQL Database Design 39

s

2

\\ Aggregates in NoSQL db design

o In NoSQL database design, we should map each aggregate to a
data modeling element having analogous features

= each aggregate should be mapped to a unit of data access,
atomic manipulation, and distribution

= therefore, a record/row, a document, or a group of related
key-value pairs — that is, a NOAM block

= classes of aggregates can then be mapped to NoAM collections

= the role for columns, document fields, or individual key-value
pairs (i.e., NOAM entries) has to be discussed

= we would like to abstract from the features of specific
datastores — NoAM enables us to do so

NoSQL Database Design 40

\\ Representing aggregates in NoAM

o An application dataset can be represented in NoAM as follows
= the application dataset is represented by a NoAM database
= each class of aggregates is represented by a collection
= the class name is used as collection name
= each aggregate object is represented by a block
= the aggregate identifier is used as block key
= each aggregate object is represented by one or more entries in

the corresponding block

= the complex value of the aggregate object is partitioned into

one or more entry values

NoSQL Database Design 41

\\ Representing aggregates in NoAM

Player:mary : ¢
username : "mary",
firstName : "Marv".
Player:rick : ¢
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
) games : {
(game : Game:2345, opponent : Player:mary),
(game : Game:7425, opponent : Player:ann),
(game : Game:1241, opponent : Player:johnny)

Game:2345 :
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {
{moves: ..., comments: ...),
(moves: ..., actions: ..., spell:...)

Player

mary

rick

Game

2345

NoSQL Database Design 42

Player:mary : ¢

username : "mary", |
firstName : "Mary", |

| lastName :
games : {
am

:

:

Player:rick : (
| username : "rick", |
| firstName : "Ricky", |
|
|

| lastName : "Doe",
| score: 42,
games : {
| game : Game:2345, opponent : Player:mary), |
|(game : Game:7425, opponent : Player:ann), |
| game : Game: 1241, opponent : Player:johnny) |

N Game:2345 : ¢
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,

rounds : {
{moves : ..., comments : ...),
{moves : ..., actions: ..., spell:...)
¥
)
NoSQL Database Design LX)

username “mary”
firstName “Mary”
lastName “Wilson”

games|0] (game : Game:2345, opponent : Player:rick)
games[1] { game : Game:2611, opponent : Player:ann)

username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0] (game : Game:2345, opponent : Player:mary)
games[1] (game : Game:7425, opponent : Player:ann)
games[2] (game : Game:1241, opponent : Player:johnny)

Player
mary
rick
Game

id 2345
firstPlayer Player:mary
2345 secondPlayer Player:rick
rounds[0] (moves: ..., comments : ...)
rounds|[1] (moves: ..., actions : ..., spell : ...)

NoSQL Database Design 44

\\ - Aggregate partitioning

o In representing an aggregate object in NOAM, we use one or more
entries — to partition the complex value of the aggregate

= aggregate partitioning affects performance of data access and
manipulation operations

= this partitioning can be based on
= basic (predefined) data representation strategies
= custom data representations

NoSQL Database Design 45

o Entry per Aggregate Object (EAO)
= an aggregate object is represented by a single entry

= the entry value is the whole complex value — the entry key is
empty

username : "mary",
firstName : "Mary",
lastName : "Wilson",
mary € games : {
(game : Game:2345, opponent : Player:rick),
(game : Game:2611, opponent : Player:ann)

}
)

NoSQL Database Design 46

\\ Entry per Top-level Field (ETF)

o Entry per Top-level Field

(ETF)

= an aggregate object is represented by multiple entries — a
distinct entry for each top-level field of the complex value

= the entry value is the field value — the entry key is the field

name
username “mary”
firstName “Mary”
lastName “Wilson”
mary

{

games

}

(game : Game:2345, opponent : Player:rick),
(game : Game:2611, opponent : Player:ann)

NoSQL Database Design 47

\\ Entry per Atomic Value (EAV)

o Entry per Atomic Value (EAV)
= an aggregate object is represented by multiple entries — a

distinct entry for each

atomic value in the complex value

= the entry value is the atomic value — the entry key is the
“access path” to the atomic value

username “mary”
firstName “Mary”
lastName “Wilson”
mary games|[0].game Game:2345
games|[0].opponent Player:rick
games[1].game Game:2611
games[1].opponent Player:ann

NoSQL Database Design 48

\ Custom aggregate partitioning

o The basic data representation strategies can be suited in some
cases — but we often need to partition aggregates in custom ways

= aggregate partitioning can be driven by data access operations
— since it affects the performance of database operations

= each element of a partition (i.e., an entry) can represent either a
scalar value or a complex value — the usage of “entries” with a
complex value is a common practice in NoSQL datastores —
e.g., Protocol Buffers, Avro schemas

NoSQL Database Design 49

\ Guidelines for aggregate partitioning

o Guidelines for aggregate partitioning — adapted from Conceptual
Database Design (Batini, Ceri, Navathe, 1992)

= if an aggregate is small in size, or all or most of its data are
accessed or modified together — then it should be represented
by a single entry

= if an aggregate is large in size, and there are operations that
frequently access or modify only specific portions of the
aggregate — then it should be represented by multiple entries

= if two or more data elements are frequently accessed or
modified together — then they should belong to the same entry

= if two or more data elements are usually accessed or modified
separately — then they should belong to distinct entries

NoSQL Database Design 50

\\ Aggregate partitioning: Example

o Operations for our online game

1. when a player connects to the application — the aggregate for
the player should be retrieved

2. when a player selects a game to continue — the aggregate for
the game should be retrieved

3. when a player completes a round for a game — the aggregate
for the game should be updated, by adding the new round

4. when a player invites a friend for playing a new game — an
aggregate for a new game should be created, and the
aggregate for the opponent players should be updated, by
adding the new game

o For example, what does operation 3 suggest?

= each round should be represented using a distinct entry of the
corresponding game aggregate

NoSQL Database Design 51

\\ Aggregate partitioning: Example

Player username “mary”

firstName “Mary”

mary lastName “Wilson”
games[0] (game : Game:2345, opponent : Player:rick)
games[1] (game : Game:2611, opponent : Player:ann)
Game id 2345
firstPlayer Player:mary
2345 secondPlayer Player:rick
rounds|[0] {moves : ..., comments: ...)
rounds|[1] (moves : ..., actions : ..., spell : ...)

NoSQL Database Design 52

(- A language for data representations

o NoAM defines a language to specify aggregate partitioning — and
therefore, data representations

= the language can be used to describe or document a certain
aggregate partitioning
= more importantly, it can be used in a mapping system

= the database designer uses the language to specify a data
representation — in a system-independent way

= the mapping framework interprets the specification — to
represent aggregates in the specific target datastore and to
handle operations over them

o The language has an XPath-like syntax — and we illustrate it by
means of examples

NoSQL Database Design 53

,J? \\ The language - by eXGmp|€S

o Rule /*I* specifies strategy Entry per Aggregate Object (EAO)
= the first * matches with aggregate classes
= the second * matches with aggregate identifiers

= the rule means “use an entry for each distinct aggregate class
and distinct aggregate identifier”

(

username : "mary",

firstName : "Mary",

lastName : "Wilson",

mary € games : {

(game : Game:2345, opponent : Player:rick),
(game : Game:2611, opponent : Player:ann)

}

)

NoSQL Database Design 54

_ The language - by examples

o Rule /*I*I* specifies strategy Entry per Top-level Field (ETF)
= the third * matches with top-level fields of aggregates

= the rule means “use an entry for each distinct aggregate class,
aggregate identifier, and top-level field”

username “mary”
firstName “Mary”
lastName “Wilson”
mary
{

(game : Game:2345, opponent : Player:rick),

games { game : Game:2611, opponent : Player:ann)

NoSQL Database Design)

o A data representation is specified by a sequence of rules
= [Player/*/* — “use ETF for players”
= [Game/* — “use EAO for games”

Player username “mary”
firstName “Mary”
lastName “Wilson”
ma
{
ames ({ game : Game:2345, opponent : Player:rick),
9 (game : Game:2611, opponent : Player:ann)
}
Game (
id : 2345,
firstPlayer : Player:mary,
secondPlayer : Player:rick,
2345 € rounds : {
{moves: ..., comments: ...),
(moves: ..., actions : ... , spell : ...)

)

NoSQL Database Design 56

\\ The language - by examples

o It is possible to have more rules over a same aggregate class
= [Player/*/games[*] — “use an entry for each game played by a

player”
= [Player/*/* — “use ETF for the remaining data of each player”

username “mary”
firstName “Mary”
mary lastName “Wilson”
games|0] (game : Game:2345, opponent : Player:rick)
games[1] ({ game : Game:2611, opponent : Player:ann)

57

NoSQL Database Design

o It is possible to have more rules over a same aggregate class
= [Player/*/games[*] — “use an entry for each game played by a

player”
= [Player/* — “use EAO for the remaining data of each player”

username : “mary”,
€ firstName : “Mary”,

mary > lastName : “Wilson”

games|0] (game : Game:2345, opponent : Player:rick)
games[1] (game : Game:2611, opponent : Player:ann)

NoSQL Database Design 58

- .\- .
g7 - Implementation
g 2

o In the implementation phase, we map the intermediate data
representation to the specific data modeling elements of the target
NoSQL datastore

= given that the NoAM data model generalizes the features of the
various systems, while keeping their major aspects, it is rather
straightforward to perform this activity

o Please note that the implementation takes also care of mapping
operations — specifically, CRUD operations (create, read, update,
delete) over aggregate objects to specific data access operations

= we do not discuss this issue here
= please find more details in the references

NoSQL Database Design 59

\\ Oracle NoSQL: Implementation

o Oracle NoSQL is a key-value store — a database is a collection of
key-value pairs

= values are binary strings, opaque to the datastore

= a key is composed of two parts
= the major key is a non-empty sequence of strings
= the minor key is a (possibly-empty) sequence of strings
= e.g, /Player/mary/-/username

= the major key controls data distributions — key-value pairs
having the same major key are allocated in a same node

= atomic operations on individual key-value pairs — but also on
groups of key-value pairs having the same major key

ORACLE
NOSQL DATABASE

NoSQL Database Design 60

%1 \ Oracle NoSQL: Implementation

il
* ¥

o Mapping from NoAM to Oracle NoSQL
= a key-value pair for each entry

= the major key is composed of
- the collection name
- the block key (i.e., the aggregate identifier)

= the minor key represents the entry key (i.e., an access path)

= the value represents the entry value
- it can be either a simple value, or
- the serialization of a complex value — e.g., in JSON

ORACLE
NOSQL DATABASE

NoSQL Database Design 61

username : "mary",
firstName : "Mary",
lastName : "Wilson",
mary € games : {
(game : Game:2345, opponent : Player:rick),
{ game : Game:2611, opponent : Player:ann)

key

[Player/mary/- {“username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : [...] }

/Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : [...] }

/Game/2345/- {“id”: “2345", “firstPlayer” : “Player:mary”, “secondPlayer” : “Player:rick”, “rounds” : [...] }

ORACLE
NOSQL DATABASE

NoSQL Database Design 62

\ Oracle NoSQL: Implementation

Player username “mary”
firstName “Mary”
mary lastName “Wilson”

games|0] (game : Game:2345, opponent : Player:rick)

games[1] (game : Game:2611, opponent : Player:ann)

key vawe |

/Player/mary/-/lusername mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] {“game” : “Game:2611”, “opponent” : “Player:ann” }

ORACLE
NOSQL DATABASE

NoSQL Database Design 63

\ MongoDB: Implementation

o MongoDB is a document store — a database is a set of documents

= each document has a complex value and an identifier,

and documents are organized in collections

_ ‘ mongoDB
o Mapping from NoAM to MongoDB

= a document collection for each NoAM collection (aggregate
class)

= a main document for each block (aggregate)

= a top-level field for each entry

= the special _id field for the block key (aggregate identifier)

= atomic operations on individual documents — or on their fields

NoSQL Database Design 64

\ MongoDB: Implementation

Player username “mary”
firstName “Mary”
mary lastName “Wilson”
games|0] (game : Game:2345, opponent : Player:rick)
games[1] (game : Game:2611, opponent : Player:ann)
collection Player
{
“id”: “mary”,

“username” : “mary”,
mary “firstName” : “Mary”,
“lastName” : “Wilson”,
“games[0]” : { “game” : “Game:2345”, “opponent” : “Player:rick” },
“games[1]”: { “game” : “Game:2611”, “opponent” : “Player:ann” }

‘ mongoDB

65

NoSQL Database Design

\ MongoDB: Alternative implementation

o A different implementation ‘
= reconstruct structure of complex values mongoDB

Player

username “mary”
firstName “Mary”
mary lastName “Wilson”
games|0] (game : Game:2345, opponent : Player:rick)
games[1] (game : Game:2611, opponent : Player:ann)
collection Player
{
“_id” : “mary"’

“username” : “mary”,
mary “firstName” : “Mary”,
“lastName” : “Wilson”,
“‘games” : [{ “game” : “Game:2345”, “opponent” : “Player:rick” },
{ “game” : “Game:2611”, “opponent” : “Player:ann” }]

NoSQL Database Design 66

\ DynamoDB: Implementation

o Amazon DynamoDB is an extensible record store

= a database is a set of tables g, B

= each table is a set of items ~ . amazon
fxmazen DynamoDB

= each item contains a set of attributes, “!Z”

each with a name and a value
= each table has a primary key — composed of a hash partition
attribute and an optional range attribute

= the partition attribute controls distribution of items
= atomic operations on individual items — or on their columns

o Mapping from NoAM to DynamoDB
= a table for each collection (aggregate class)
= an item for each block (aggregate) — whose primary key is the
block key (aggregate identifier)
= an attribute for each entry

67

NoSQL Database Design

\ DynamoDB: Implementation

username “mary”
firstName “Mary”
mary lastName “Wilson”
games|0] (game : Game:2345, opponent : Player:rick)
games[1] (game : Game:2611, opponent : Player:ann)
table Player
@MMM@M“
mary Mary Wilson {-}
rick Ricky Doe 42 {...} {-} {...}
table Game
“WMM_
2345 Player:mary Player:rick

>N C

- amazon
webservices
(fsmazen DynamuDB)r

NoSQL Database Design 68

\ - Conclusion (NoAM)

o NoAM (NoSQL Abstract Model) is a high-level approach to NoSQL
database design for next-generation web applications

= a high-level approach
= initial design activities are independent of any specific target
systems
= it is based on NOoAM
= NoAM is an intermediate, abstract data model for NoSQL

databases — which exploits the commonalities of their
various data models — but also introduces abstractions to

balance their differences and variations

69

NoSQL Database Design

\ Conclusion (NoAM data model)

o Open issues
= NoAM data model
= other abstractions are needed to represent further data
modeling elements available in NoSQL datastores
= further abstractions related to relevant metadata — e.g.,
versions and timestamps, to support concurrency control
and consistency management
= derived data and materialized views
= so far, we have assumed that data is represented in a non-
redundant way — some redundancy is usually suggested in
NoSQL databases, to improve performance — but note that
view maintenance could affect consistency negatively

= support to multi-aggregate transactions is required

NoSQL Database Design 70

\ Conclusion (NoAM approach)

o Open issues
= NoAM approach

= the proposed guidelines can propose conflicting suggestions
— therefore, the application of the approach might result in a
number of candidate data representations, rather than to a
single one

= tools can help the designer to assess a preferred solution
= NoSQL database design for different settings

= for example, to support query-intensive applications and
analytical queries

NoSQL Database Design 71

* ONDM
N

(Object-NoSQL Datastore Mapper)

o ONDM (Object-NoSQL Datastore Mapper) is a framework that
provides application developers with

= a uniform access towards a variety of NoSQL datastores

= the ability to map application data to different data
representations, in a flexible way

o Main features of ONDM
= object-oriented API, based on Java Persistence API (JPA)

= transparent access to various NoSQL datastores — such as
Oracle NoSQL, Redis, MongoDB, CouchBase, and Cassandra

= internal representation based on NoAM

= flexible data representations — based on the NoAM language
for data representations

NoSQL Database Design 72

o A layered architecture

= API — based on JPA, offers
CRUD operations to
manipulate aggregates

= internal aggregate manager __
— conversion between R
aggregate objects and an rci e
internal representation
(JSON) — cache mgmt = E]
- data representation manager e
— in NoAM, wrt the specified s

Oracle NoSQL DynamoDB

Application

Internal Cache
Representation

d ata re p rese n tatio n Datastore Adapter Datastore Adapter

= datastore adapters —
conversion between NoAM
and specific data structures
and operations

NoSQL Database Design 73

o The database design activity can result in a number of candidate
data representations — rather than to a single one

= consider again the operations for our online game

2. when a player selects a game to continue — the aggregate for
the game should be retrieved

3. when a player completes a round for a game — the aggregate }
for the game should be updated, by adding the new round

= operations 2 and 3 suggest different choices for the
representation of rounds — (i) all together in a single entry or
(i) using a distinct entry for each round

o In this case, experiments are needed to assess the most suitable
design solution — and ONDM can help in performing them

= an important feature is the ability to select a desired data
representation in a declarative way — using the NoAM language
for data representations

NoSQL Database Design 82

\ A case study in NoSQL db design

o To decide between the various candidate representations, a few
experiments can help

= the target datastore is Oracle NoSQL (single node)
= three candidate representations

= an entry for a whole game — EAO

= /[Game/*/rounds[*] + /Game/*/* — Rounds+ETF

= /[Game/*/rounds[*] + /Game/* — Rounds+EAQO
= various workloads

= game retrieval

= round addition

= mixed — 80% game retrievals + 20% round additions
= each game is 8kb, each round is 0.5kb
= database size is in GB, timings are ms per operation

NoSQL Database Design]

o B N W B~ U N

—
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

-@® EAO Rounds+ETF e==@e=== Rounds+EAO -@ EAO Rounds+ETF e==@=== Rounds+EAO

Mixed Load (80/20)

— = O

o B N W A U O N

2 4 6 8 10 12 14 16

-@ EAO Rounds+ETF e==@=== Rounds+EAQ

NoSQL Database Design 84

\\ - Conclusion (case study)

o The experiments show that aggregate partitioning has indeed
impact on the performance of the various operations

= in general, when using a NoSQL database, decisions on the
organization of data are required

= these decisions are significant — as the data representation
affects major quality requirements — such as scalability,
performance, and consistency

NoSQL Database Design

85

