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Luca Cabibbo

 NoSQL datastores are a new generation of distributed database 
systems – they have been designed to manage large data sets 
distributed over many servers

 a promise of NoSQL database technology is to support the 
development of next-generation web applications 

 in this context, we are interested in NoSQL database design

 we also present an abstract data model for NoSQL databases
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 NoAM – an abstract data model for NoSQL databases

 NoSQL database design for next-generation web applications

 The NoAM approach to NoSQL database design

 overview 
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 aggregate partitioning 

 a language for data representations 

 implementation 

 conclusion 

 ONDM (Object-NoSQL Datastore Mapper) 

 architecture 

 conclusion 

 A case study in NoSQL database design
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- Outline
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 NoSQL datastores are a new generation of distributed database 
systems 

 they have been designed to support the needs of an increasing 
number of modern applications – for which traditional database 
technology is unsatisfactory

 a main requirement for these systems is the ability to manage 
large data sets distributed over many servers – whereas 
relational DBMSs are not designed to be run on clusters 
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* NoSQL database systems
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 The NoSQL landscape is characterized by a high heterogeneity 

 http://nosql-database.org/ lists 150 non-relational databases 

 they have different data models and different APIs to access 
the data – as well as different consistency and durability 
guarantees 

 We focus here on three main categories of NoSQL databases  

 key-value stores 

 a database is a collection of key-value pairs 

 document stores 

 a database is a collection of documents

 extensible record stores 

 data is organized as tables of extensible records 

 these categories include more than 70 systems 
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NoSQL and heterogeneity 
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 In a key-value store, a database is a schema-less collection of 
key-value pairs 

 values are usually binary strings, opaque to the datastore –
even if some systems have interpreted values, such as 
counters, lists, or hashes 

 programmer-defined keys are either binary strings or structured 
keys – in some systems, part of the key is used to control data 
distribution

 simple data access operations – put, get, and delete – over an 
individual key-value pair or a group of related key-value pairs  
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Key-value stores
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Key-value stores: examples 

key value

Player:mary

username : mary
firstName : Mary 
lastName : Wilson 
games : { … } 

Player:rick

username : rick
firstName : Ricky 
lastName : Doe 
score : 42 
games : { ... }

a hash value

key value

/Player/mary/- { “username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : […] } 

/Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : […] } 

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson 

/Player/mary/-/games [ … ]

Luca Cabibbo

 In a document store, a database is a set of documents

 each document has a complex value and an identifier

 documents are composed of fields, which are dynamically 
defined for each document at runtime – each field can be a 
scalar value, a list, or a document itself 

 documents are organized in collections

 the structure of documents is not opaque to datastores – they 
create indexes on documents and support content-based 
querying 
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Document stores: example 

id document

mary

{ 
“_id” : “mary”, 
“username” : “mary”, 
“firstName” : “Mary”, 
“lastName” : “Wilson”, 
“games” : [ { “game” : “Game:2345”, “opponent” : “Player:rick” },

{ “game” : “Game:2611”, “opponent” : “Player:ann” } ]
} 

rick

{ 
“_id” : “rick”, 
“username” : “rick”, 
“firstName” : “Ricky”, 
“lastName” : “Doe”, 
“score” : “42”, 
“games” : [ { “game” : “Game:2345”, “opponent” : “Player:mary” },

{ “game” : “Game:7425”, “opponent” : “Player:ann” },
{ “game” : “Game:1241”, “opponent” : “Player:johnny” } ]

} 

collection Player

Luca Cabibbo

 An extensible record (or column-family) store organizes data 
around tables, records/rows, and columns

 a relaxation of the relational model, in which databases are 
mostly schema-less – since each row can have its own set of 
columns 

 each table designates a primary key – which comprises the 
only mandatory attributes of the table – in some systems, part 
of the primary key is used to control data distribution 
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Extensible record stores 
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Extensible record stores: example

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

Luca Cabibbo

 The NoSQL landscape is characterized by a high heterogeneity 

 however, “the availability of a high-level representation of the 
data at hand, be it logical or conceptual, remains a fundamental 
tool for developers and users, since it makes understanding, 
managing, accessing, and integrating information sources 
much easier, independently of the technologies used”

 To this end, we propose NoAM (NoSQL Abstract Model) – an 
abstract and system independent data model for NoSQL
databases 

 NoAM aims at exploiting the commonalities of their various data 
models – but it also introduces abstractions to balance their 
differences and variations 
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* NoAM – an abstract data model 
for NoSQL databases
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 Main commonalities of their various NoSQL data models 

 NoSQL datastores share the common provision of having a 
modeling data element that is a distribution, access and 
manipulation unit (DAM unit)

 a data access unit 

 more precisely, a maximal unit of consistency/atomic data 
access and manipulation 

 a unit of distribution 

 each DAM unit is located on a single node of the cluster –
but in general different DAM units are distributed among 
the nodes of the cluster

 in the various systems, a DAM unit can be 

 a record/row – a document – a group of key-value pairs 
sharing part of the key 

 in NoAM, a DAM unit is called a block
NoSQL Database Design 15

The NoAM abstract data model
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 Main commonalities of their various NoSQL data models 

 NoSQL datastores also offer the ability to access just some 
parts of a DAM unit – they have a modeling data element that is 
a “smaller” data access unit (SDA unit)

 in the various systems, an SDA unit can be 

 a column – a field – an individual key-value pair 

 in NoAM, a SDA unit is called an entry

moreover, many datastores provide a notion of collection of 
data access units 

 in the various systems, a collection can be 

 a table – a document collection 

 in NoAM, a collection of DAM units (blocks) is called a 
collection
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The NoAM abstract data model
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 The NoAM abstract data model

 a database is a set of collections – each collection has a 
distinct name 

 a collection is a set of blocks – each block is identified in its 
collection by a block key 

 a block is a non-empty set of entries 

 each entry is a pair (ek,ev) 

 ek is the entry key – unique within its block 

 ev is a value (either a scalar or a complex value), called the 
entry value
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The NoAM abstract data model
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Example: a NoAM database
username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game
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 We consider here NoSQL database design – the problem of 
representing persistent data of an application in a target NoSQL
database

 NoSQL databases are claimed to be “schema-less” 

 however, the data of interest do show some structure, and 
decisions on the organization of data are required 

 specifically, to map application data to the modeling 
elements (collections, tables, documents, key-value pairs) 
available in the target datastore
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* NoSQL database design for 
next-generation web applications

Luca Cabibbo

 Consider a fictious online, web 2.0 game – e.g., some variant of 
Ruzzle – which should manage various application objects, 
including players, games, rounds, and moves 
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A running example

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...
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 Consider a fictious online, web 2.0 game – e.g., some variant of 
Ruzzle – which should manage various application objects, 
including players, games, rounds, and moves 

 assume for example that the target database is an extensible 
record store 

 what records (and tables) should we use? 

 a distinct record for each different application object? 

 or should we use each record to represent a group of related 
objects? what is the grouping criterion? 

 what columns should we use? 

 a distinct column for each object field? 

 or should we use each column to represent a group of 
related fields? what is the grouping criterion?
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A running example
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 In NoSQL database design 

 decisions on the organization of data are required, in any case 

 these decisions are significant – as the data representation 
affects major quality requirements – such as scalability, 
performance, and consistency

 a randomly chosen data representation may not satisfy the 
needed qualities 

 how should we make design decisions to indeed support the 
qualities of next-generation web applications? 
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NoSQL database design
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 We focus here on database design for next-generation web 
applications – also called scalable web applications, or scalable 
simple OLTP-style applications

 foremost requirements of these applications 

 data of interest are large and have a flexible structure 

 data access is based on simple read-write operations 

 horizontal scalability – data should be distributed over a 
cluster of many servers 

 high availability and good response time 

 relaxed consistency guarantees – general ACID transactions 
are typically unnecessary – however, a certain degree of 
consistency is required, to easy application development –
e.g., eventual consistency or BASE 
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Next-generation web applications
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 State-of-the-art in NoSQL database design

 a lot of best practices and guidelines 

 but usually related to a specific datastore or class of 
datastores

 neither a systematic methodology nor a high-level data model 

 as in the case of relational database design 
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State of the art
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 We propose the NoAM approach to NoSQL database design 

 tailored to the requirements of next-generation web applications 

 based on the NoAM abstract data model for NoSQL databases 

 a high level/system independent approach – the initial design 
activities are independent of any specific target systems 

 a NoAM abstract database is first used to represent the 
application data

 the intermediate representation is then implemented in a 
target NoSQL datastore, taking into account its specific 
features 
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* The NoAM approach to 
NoSQL database design
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 The NoAM approach to NoSQL database design is based on the 
following main phases

 aggregate design – to identify the various classes of aggregate 
objects needed in the application 

 this activity is driven by use cases (functional requirements) 
and scalability and consistency needs 

 aggregate partitioning – aggregates are partitioned into smaller 
data elements 

 driven by use cases and performance requirements 

 high-level NoSQL database design – aggregate are mapped to 
the NoAM intermediate data model 

 implementation – to map the intermediate representation to the 
specific modeling elements of the target datastore
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 We start by considering application data objects…
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Application data

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 … we group them in aggregates (decisions needed!) …
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Aggregates

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...
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 … we consider aggregates as complex-value objects…
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Aggregates as complex-value objects

Player:mary : 
username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick", 
firstName : "Ricky", 
lastName : "Doe", 
score : 42, 
games : { 

 game : Game:2345, opponent : Player:mary , 
 game : Game:7425, opponent : Player:ann , 
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345", 
firstPlayer : Player:mary, 
secondPlayer : Player:rick, 
rounds : { 

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}


Luca Cabibbo

 … we partition these complex values (decisions needed!) … 
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Aggregate partitioning

Player:mary : 
username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick", 
firstName : "Ricky", 
lastName : "Doe", 
score : 42, 
games : { 

 game : Game:2345, opponent : Player:mary , 
 game : Game:7425, opponent : Player:ann , 
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345", 
firstPlayer : Player:mary, 
secondPlayer : Player:rick, 
rounds : { 

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}

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 … and represent them into an abstract data model for NoSQL
databases (consequence of decisions) … 
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Data representation in NoAM

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game

Luca Cabibbo

 … and finally we map the intermediate representation to the data 
structures of the target datastore (the approach specifies how)
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Implementation

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2] …

2345 Player:mary Player:rick {…} {…}

table Game
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 … and finally we map the intermediate representation to the data 
structures of the target datastore (the approach specifies how)
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Implementation

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson 

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

/Games/2345/-/id 2345

/Games/2345/-/firstPlayer Player:mary

/Games/2345/-/secondPlayer Player:rick

/Games/2345/-/rounds[0] { … }

/Games/2345/-/rounds[1] { … }

… …

Luca Cabibbo

 In our approach, we consider application data arranged in 
aggregates

 the notion of aggregate comes from Domain-Driven Design 
(DDD) – a popular object-oriented design methodology – and 
from principles in the design of scalable applications

 aggregate design affects scalability and the scope of atomic 
operations – and therefore, the ability to support relevant 
integrity constraints
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- Aggregates and aggregate design 
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 The design of scalable applications is discussed in a seminal 
paper by Pat Helland – Life beyond distributed transactions: an 
apostate’s opinion, CIDR 2007

 data should be organized as a set of complex-value objects 
with unique identifiers – called entities or aggregates – each 
aggregate is a “chunk” of related data, and is intended to be a 
unit of data access and manipulation 

 aggregates should govern data distribution – aggregates are 
distributed among the nodes of the cluster, but each aggregate 
is located on a single node 

 atomic transactions can not span multiple aggregates – to avoid 
the coordination overhead required by distributed transactions 

 operations spanning multiple aggregates should be 
implemented as multiple operations, each over a single 
aggregate – using asynchronous messages and eventual 
consistency 
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Design of scalable applications
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 Domain-Driven Design (DDD, Eric Evans, 2003) is also based on 
a similar notion of aggregate – DDD gives us other insights on 
aggregate design 

 each aggregate is a group of application objects (entities and 
value objects) rooted in an entity

 an entity is a persistence object that has independent 
existence and a unique identifier 

 a value object is a persistent object, without an own identifier

 aggregate boundaries govern distribution and transactions

 each aggregate should be 

 large enough, to accommodate all the data involved by some 
integrity constraints or other business rules 

 as small as possible, to reduce concurrency collisions – to 
support performance and scalability requirements 

NoSQL Database Design 36

Aggregates in Domain-driven design
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 Aggregates in our running example are players and games

 but rounds are not – to support an integrity constraint of the 
game 
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Example

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 At the application level, data is organized in aggregates

 each aggregate object is can be considered a complex-value 
object, with a unique identifier 

 a set of aggregate objects is a class

 a set of class form an application dataset
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Application data model

Player:mary : 
username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick", 
firstName : "Ricky", 
lastName : "Doe", 
score : 42, 
games : { 

 game : Game:2345, opponent : Player:mary , 
 game : Game:7425, opponent : Player:ann , 
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345", 
firstPlayer : Player:mary, 
secondPlayer : Player:rick, 
rounds : { 

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}

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 To summarize, aggregates have the following characteristics 

 an aggregate is a complex-value object

 each aggregate is a unit of data access and atomic 
manipulation 

 aggregates govern data distribution 

 In NoSQL database design, we should map each aggregate to a 
data modeling element having analogous features 
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Aggregates in NoSQL db design
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 In NoSQL database design, we should map each aggregate to a 
data modeling element having analogous features 

 each aggregate should be mapped to a unit of data access, 
atomic manipulation, and distribution 

 therefore, a record/row, a document, or a group of related 
key-value pairs – that is, a NoAM block

 classes of aggregates can then be mapped to NoAM collections

 the role for columns, document fields, or individual key-value 
pairs (i.e., NoAM entries) has to be discussed

 we would like to abstract from the features of specific 
datastores – NoAM enables us to do so 
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Aggregates in NoSQL db design
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 An application dataset can be represented in NoAM as follows

 the application dataset is represented by a NoAM database

 each class of aggregates is represented by a collection

 the class name is used as collection name 

 each aggregate object is represented by a block

 the aggregate identifier is used as block key 

 each aggregate object is represented by one or more entries in 
the corresponding block

 the complex value of the aggregate object is partitioned into 
one or more entry values 
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Representing aggregates in NoAM

Luca Cabibbo

Fare clic per modificare lo stile del 
titolo

Luca Cabibbo NoSQL Database Design 42

Representing aggregates in NoAM

Player:mary : 
username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick", 
firstName : "Ricky", 
lastName : "Doe", 
score : 42, 
games : { 

 game : Game:2345, opponent : Player:mary , 
 game : Game:7425, opponent : Player:ann , 
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345", 
firstPlayer : Player:mary, 
secondPlayer : Player:rick, 
rounds : { 

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}


… …

… …

… …

mary

… …

… …

… …

… …

rick

Player

… …

… …

… …

2345

Game
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Example: partitioning of aggregates 

Player:mary : 
username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick", 
firstName : "Ricky", 
lastName : "Doe", 
score : 42, 
games : { 

 game : Game:2345, opponent : Player:mary , 
 game : Game:7425, opponent : Player:ann , 
 game : Game:1241, opponent : Player:johnny 

}
 Game:2345 : 

id : "2345", 
firstPlayer : Player:mary, 
secondPlayer : Player:rick, 
rounds : { 

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}

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Example: aggregates in NoAM
username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game



Luca Cabibbo

 In representing an aggregate object in NoAM, we use one or more 
entries – to partition the complex value of the aggregate 

 aggregate partitioning affects performance of data access and 
manipulation operations 

 this partitioning can be based on 

 basic (predefined) data representation strategies 

 custom data representations 
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- Aggregate partitioning

Luca Cabibbo

 Entry per Aggregate Object (EAO) 

 an aggregate object is represented by a single entry 

 the entry value is the whole complex value – the entry key is 
empty 
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Entry per Aggregate Object (EAO)




username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


mary



Luca Cabibbo

 Entry per Top-level Field (ETF) 

 an aggregate object is represented by multiple entries – a 
distinct entry for each top-level field of the complex value 

 the entry value is the field value – the entry key is the field 
name
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Entry per Top-level Field (ETF)

username “mary”

firstName “Mary”

lastName “Wilson”

games

{ 
 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}

mary

Luca Cabibbo

 Entry per Atomic Value (EAV) 

 an aggregate object is represented by multiple entries – a 
distinct entry for each atomic value in the complex value 

 the entry value is the atomic value – the entry key is the 
“access path” to the atomic value
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Entry per Atomic Value (EAV)

username “mary”

firstName “Mary”

lastName “Wilson”

games[0].game Game:2345

games[0].opponent Player:rick

games[1].game Game:2611

games[1].opponent Player:ann

mary



Luca Cabibbo

 The basic data representation strategies can be suited in some 
cases – but we often need to partition aggregates in custom ways 

 aggregate partitioning can be driven by data access operations 
– since it affects the performance of database operations

 each element of a partition (i.e., an entry) can represent either a 
scalar value or a complex value – the usage of “entries” with a 
complex value is a common practice in NoSQL datastores –
e.g., Protocol Buffers, Avro schemas
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Custom aggregate partitioning
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 Guidelines for aggregate partitioning – adapted from Conceptual 
Database Design (Batini, Ceri, Navathe, 1992) 

 if an aggregate is small in size, or all or most of its data are 
accessed or modified together – then it should be represented 
by a single entry 

 if an aggregate is large in size, and there are operations that 
frequently access or modify only specific portions of the 
aggregate – then it should be represented by multiple entries

 if two or more data elements are frequently accessed or 
modified together – then they should belong to the same entry

 if two or more data elements are usually accessed or modified 
separately – then they should belong to distinct entries
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Guidelines for aggregate partitioning
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 Operations for our online game 

1. when a player connects to the application – the aggregate for 
the player should be retrieved 

2. when a player selects a game to continue – the aggregate for 
the game should be retrieved 

3. when a player completes a round for a game – the aggregate 
for the game should be updated, by adding the new round 

4. when a player invites a friend for playing a new game – an 
aggregate for a new game should be created, and the 
aggregate for the opponent players should be updated, by 
adding the new game 

 For example, what does operation 3 suggest? 

 each round should be represented using a distinct entry of the 
corresponding game aggregate 
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Aggregate partitioning: Example
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Aggregate partitioning: Example

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game
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 NoAM defines a language to specify aggregate partitioning – and 
therefore, data representations 

 the language can be used to describe or document a certain 
aggregate partitioning 

more importantly, it can be used in a mapping system 

 the database designer uses the language to specify a data 
representation – in a system-independent way 

 the mapping framework interprets the specification – to 
represent aggregates in the specific target datastore and to 
handle operations over them 

 The language has an XPath-like syntax – and we illustrate it by 
means of examples 
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- A language for data representations
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 Rule /*/* specifies strategy Entry per Aggregate Object (EAO) 

 the first * matches with aggregate classes 

 the second * matches with aggregate identifiers 

 the rule means “use an entry for each distinct aggregate class 
and distinct aggregate identifier”
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The language – by examples




username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


mary
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 Rule /*/*/* specifies strategy Entry per Top-level Field (ETF) 

 the third * matches with top-level fields of aggregates 

 the rule means “use an entry for each distinct aggregate class, 
aggregate identifier, and top-level field”
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The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games

{ 
 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}

mary

Luca Cabibbo

 A data representation is specified by a sequence of rules

 /Player/*/* – “use ETF for players”

 /Game/* – “use EAO for games”
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The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games

{ 
 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}

mary

Player




id : 2345, 
firstPlayer : Player:mary, 
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … , 
 moves : … , actions : … , spell : … 

}


2345

Game
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 It is possible to have more rules over a same aggregate class

 /Player/*/games[*] – “use an entry for each game played by a 
player”

 /Player/*/* – “use ETF for the remaining data of each player”

NoSQL Database Design 57

The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Luca Cabibbo

 It is possible to have more rules over a same aggregate class

 /Player/*/games[*] – “use an entry for each game played by a 
player”

 /Player/* – “use EAO for the remaining data of each player”
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The language – by examples




username : “mary”, 
firstName : “Mary”, 
lastName : “Wilson” 



games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary
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 In the implementation phase, we map the intermediate data 
representation to the specific data modeling elements of the target 
NoSQL datastore

 given that the NoAM data model generalizes the features of the 
various systems, while keeping their major aspects, it is rather 
straightforward to perform this activity 

 Please note that the implementation takes also care of mapping 
operations – specifically, CRUD operations (create, read, update, 
delete) over aggregate objects to specific data access operations 

 we do not discuss this issue here 

 please find more details in the references
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- Implementation
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 Oracle NoSQL is a key-value store – a database is a collection of 
key-value pairs 

 values are binary strings, opaque to the datastore

 a key is composed of two parts 

 the major key is a non-empty sequence of strings 

 the minor key is a (possibly-empty) sequence of strings 

 e.g, /Player/mary/-/username 

 the major key controls data distributions – key-value pairs 
having the same major key are allocated in a same node 

 atomic operations on individual key-value pairs – but also on 
groups of key-value pairs having the same major key
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Oracle NoSQL: Implementation
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 Mapping from NoAM to Oracle NoSQL

 a key-value pair for each entry 

 the major key is composed of 

 the collection name 

 the block key (i.e., the aggregate identifier) 

 the minor key represents the entry key (i.e., an access path) 

 the value represents the entry value 

 it can be either a simple value, or 

 the serialization of a complex value – e.g., in JSON 
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Oracle NoSQL: Implementation
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Oracle NoSQL: Implementation

key value

/Player/mary/- { “username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : […] } 

/Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : […] } 

/Game/2345/- { “id” : “2345”, “firstPlayer” : “Player:mary”, “secondPlayer” : “Player:rick”, “rounds” : […] }




username : "mary", 
firstName : "Mary", 
lastName : "Wilson", 
games : { 

 game : Game:2345, opponent : Player:rick , 
 game : Game:2611, opponent : Player:ann 

}


mary

Player
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Oracle NoSQL: Implementation

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson 

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

Luca Cabibbo

 MongoDB is a document store – a database is a set of documents

 each document has a complex value and an identifier, 
and documents are organized in collections 

 Mapping from NoAM to MongoDB

 a document collection for each NoAM collection (aggregate 
class) 

 a main document for each block (aggregate) 

 a top-level field for each entry

 the special _id field for the block key (aggregate identifier) 

 atomic operations on individual documents – or on their fields
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MongoDB: Implementation
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MongoDB: Implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id document

mary

{ 
“_id” : “mary”, 
“username” : “mary”, 
“firstName” : “Mary”, 
“lastName” : “Wilson”, 
“games[0]” : { “game” : “Game:2345”, “opponent” : “Player:rick” },
“games[1]” : { “game” : “Game:2611”, “opponent” : “Player:ann” }  

} 

collection Player

Luca Cabibbo

 A different implementation 

 reconstruct structure of complex values 
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MongoDB: Alternative implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id document

mary

{ 
“_id” : “mary”, 
“username” : “mary”, 
“firstName” : “Mary”, 
“lastName” : “Wilson”, 
“games” : [ { “game” : “Game:2345”, “opponent” : “Player:rick” },

{ “game” : “Game:2611”, “opponent” : “Player:ann” } ]
} 

collection Player
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 Amazon DynamoDB is an extensible record store 

 a database is a set of tables 

 each table is a set of items 

 each item contains a set of attributes, 
each with a name and a value 

 each table has a primary key – composed of a hash partition 
attribute and an optional range attribute 

 the partition attribute controls distribution of items 

 atomic operations on individual items – or on their columns

 Mapping from NoAM to DynamoDB

 a table for each collection (aggregate class) 

 an item for each block (aggregate) – whose primary key is the 
block key (aggregate identifier) 

 an attribute for each entry
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DynamoDB: Implementation
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DynamoDB: Implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2] …

2345 Player:mary Player:rick {…} {…}

table Game
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 NoAM (NoSQL Abstract Model) is a high-level approach to NoSQL
database design for next-generation web applications 

 a high-level approach 

 initial design activities are independent of any specific target 
systems 

 it is based on NoAM

 NoAM is an intermediate, abstract data model for NoSQL
databases – which exploits the commonalities of their 
various data models – but also introduces abstractions to 
balance their differences and variations
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- Conclusion (NoAM)
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 Open issues 

 NoAM data model 

 other abstractions are needed to represent further data 
modeling elements available in NoSQL datastores

 further abstractions related to relevant metadata – e.g., 
versions and timestamps, to support concurrency control 
and consistency management

 derived data and materialized views

 so far, we have assumed that data is represented in a non-
redundant way – some redundancy is usually suggested in 
NoSQL databases, to improve performance – but note that 
view maintenance could affect consistency negatively 

 support to multi-aggregate transactions is required 
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Conclusion (NoAM data model)
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 Open issues 

 NoAM approach 

 the proposed guidelines can propose conflicting suggestions 
– therefore, the application of the approach might result in a 
number of candidate data representations, rather than to a 
single one 

 tools can help the designer to assess a preferred solution 

 NoSQL database design for different settings 

 for example, to support query-intensive applications and 
analytical queries 
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Conclusion (NoAM approach)
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 ONDM (Object-NoSQL Datastore Mapper) is a framework that 
provides application developers with

 a uniform access towards a variety of NoSQL datastores

 the ability to map application data to different data 
representations, in a flexible way 

 Main features of ONDM 

 object-oriented API, based on Java Persistence API (JPA) 

 transparent access to various NoSQL datastores – such as 
Oracle NoSQL, Redis, MongoDB, CouchBase, and Cassandra

 internal representation based on NoAM

 flexible data representations – based on the NoAM language 
for data representations 
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* ONDM 
(Object-NoSQL Datastore Mapper)
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 A layered architecture 

 API – based on JPA, offers 
CRUD operations to 
manipulate aggregates 

 internal aggregate manager 
– conversion between 
aggregate objects and an 
internal representation 
(JSON) – cache mgmt

 data representation manager 
– in NoAM, wrt the specified 
data representation

 datastore adapters –
conversion between NoAM
and specific data structures 
and operations 

Application

create, read, update, delete 
(of application objects)

Internal 
Representation

{
   "id" : "2345", 
   "roundCount" : "2", 
   "firstPlayer" : "Player:mary", 
   "secondPlayer" : "Player:rick", 
   "rounds" : [...] 
}

Game:2345

JSON

Java

put, get, delete 
(of complex‐value objects)

Data Representation

NoAM

Game : 2345

id : 2345

roundCount  : 2

firstPlayer  : Player:mary

secondPlayer : Player:rick

rounds[0] :  moves:…, comments:... 

rounds[1] :  moves:…, comments:... 

Oracle NoSQL
Datastore

Oracle NoSQL
Datastore Adapter

Oracle NoSQL
API operations

DynamoDB
Datastore

DynamoDB
Datastore Adapter

DynamoDB
API operations

id rc firstPlayer secondPlayer rounds[0]

2345 2 Player:mary Player:rick ...

rounds[1]

...

Game/2345/‐/id

Game/2345/‐/roundCount

Game/2345/‐/firstPlayer

Game/2345/‐/secondPlayer

Game/2345/‐/rounds[0]

Game/2345/‐/rounds[1]

2345

2

Player:mary

Player:rick

{ moves:[…], comments:[…] }

{ moves:[…], comments:[…] }

...

/Player/*/games[*]
/Player/*

/Game/*/rounds[*]
/Game/*/*

Data Representation 
Language

Cache

put, get, delete, 
multiPut, multiGet, multiDelete

(of entries and blocks)
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- Architecture of ONDM 
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 The database design activity can result in a number of candidate 
data representations – rather than to a single one 

 consider again the operations for our online game 

2. when a player selects a game to continue – the aggregate for 
the game should be retrieved 

3. when a player completes a round for a game – the aggregate 
for the game should be updated, by adding the new round 

 operations 2 and 3 suggest different choices for the 
representation of rounds – (i) all together in a single entry or 
(ii) using a distinct entry for each round

 In this case, experiments are needed to assess the most suitable 
design solution – and ONDM can help in performing them 

 an important feature is the ability to select a desired data 
representation in a declarative way – using the NoAM language 
for data representations 
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* A case study in NoSQL db design
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 To decide between the various candidate representations, a few 
experiments can help 

 the target datastore is Oracle NoSQL (single node)

 three candidate representations 

 an entry for a whole game – EAO

 /Game/*/rounds[*] + /Game/*/* – Rounds+ETF

 /Game/*/rounds[*] + /Game/* – Rounds+EAO

 various workloads 

 game retrieval 

 round addition 

 mixed – 80% game retrievals + 20% round additions 

 each game is 8kb, each round is 0.5kb 

 database size is in GB, timings are ms per operation 
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A case study in NoSQL db design
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A case study in NoSQL db design
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 The experiments show that aggregate partitioning has indeed 
impact on the performance of the various operations 

 in general, when using a NoSQL database, decisions on the 
organization of data are required 

 these decisions are significant – as the data representation 
affects major quality requirements – such as scalability, 
performance, and consistency
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- Conclusion (case study)


