
Luca Cabibbo

Luca Cabibbo

NoSQL Database Design
for Next-Generation Web

Applications

Joint work with Francesca Bugiotti,
Paolo Atzeni, and Riccardo Torlone

NoSQL Database Design 1

Luca Cabibbo

 NoSQL datastores are a new generation of distributed database
systems – they have been designed to manage large data sets
distributed over many servers

 a promise of NoSQL database technology is to support the
development of next-generation web applications

 in this context, we are interested in NoSQL database design

 we also present an abstract data model for NoSQL databases

NoSQL Database Design 2

- Introduction

Luca Cabibbo

 NoSQL database systems

 NoAM – an abstract data model for NoSQL databases

 NoSQL database design for next-generation web applications

 The NoAM approach to NoSQL database design

 overview

 aggregates and aggregate design

 aggregate partitioning

 a language for data representations

 implementation

 conclusion

 ONDM (Object-NoSQL Datastore Mapper)

 architecture

 conclusion

 A case study in NoSQL database design

NoSQL Database Design 3

- Outline

Luca Cabibbo

 NoSQL datastores are a new generation of distributed database
systems

 they have been designed to support the needs of an increasing
number of modern applications – for which traditional database
technology is unsatisfactory

 a main requirement for these systems is the ability to manage
large data sets distributed over many servers – whereas
relational DBMSs are not designed to be run on clusters

NoSQL Database Design 5

* NoSQL database systems

Luca Cabibbo

 The NoSQL landscape is characterized by a high heterogeneity

 http://nosql-database.org/ lists 150 non-relational databases

 they have different data models and different APIs to access
the data – as well as different consistency and durability
guarantees

 We focus here on three main categories of NoSQL databases

 key-value stores

 a database is a collection of key-value pairs

 document stores

 a database is a collection of documents

 extensible record stores

 data is organized as tables of extensible records

 these categories include more than 70 systems

NoSQL Database Design 7

NoSQL and heterogeneity

Luca Cabibbo

 In a key-value store, a database is a schema-less collection of
key-value pairs

 values are usually binary strings, opaque to the datastore –
even if some systems have interpreted values, such as
counters, lists, or hashes

 programmer-defined keys are either binary strings or structured
keys – in some systems, part of the key is used to control data
distribution

 simple data access operations – put, get, and delete – over an
individual key-value pair or a group of related key-value pairs

NoSQL Database Design 8

Key-value stores

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 9

Key-value stores: examples

key value

Player:mary

username : mary
firstName : Mary
lastName : Wilson
games : { … }

Player:rick

username : rick
firstName : Ricky
lastName : Doe
score : 42
games : { ... }

a hash value

key value

/Player/mary/- { “username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : […] }

/Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : […] }

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games […]

Luca Cabibbo

 In a document store, a database is a set of documents

 each document has a complex value and an identifier

 documents are composed of fields, which are dynamically
defined for each document at runtime – each field can be a
scalar value, a list, or a document itself

 documents are organized in collections

 the structure of documents is not opaque to datastores – they
create indexes on documents and support content-based
querying

NoSQL Database Design 10

Document stores

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 11

Document stores: example

id document

mary

{
“_id” : “mary”,
“username” : “mary”,
“firstName” : “Mary”,
“lastName” : “Wilson”,
“games” : [{ “game” : “Game:2345”, “opponent” : “Player:rick” },

{ “game” : “Game:2611”, “opponent” : “Player:ann” }]
}

rick

{
“_id” : “rick”,
“username” : “rick”,
“firstName” : “Ricky”,
“lastName” : “Doe”,
“score” : “42”,
“games” : [{ “game” : “Game:2345”, “opponent” : “Player:mary” },

{ “game” : “Game:7425”, “opponent” : “Player:ann” },
{ “game” : “Game:1241”, “opponent” : “Player:johnny” }]

}

collection Player

Luca Cabibbo

 An extensible record (or column-family) store organizes data
around tables, records/rows, and columns

 a relaxation of the relational model, in which databases are
mostly schema-less – since each row can have its own set of
columns

 each table designates a primary key – which comprises the
only mandatory attributes of the table – in some systems, part
of the primary key is used to control data distribution

NoSQL Database Design 12

Extensible record stores

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 13

Extensible record stores: example

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

Luca Cabibbo

 The NoSQL landscape is characterized by a high heterogeneity

 however, “the availability of a high-level representation of the
data at hand, be it logical or conceptual, remains a fundamental
tool for developers and users, since it makes understanding,
managing, accessing, and integrating information sources
much easier, independently of the technologies used”

 To this end, we propose NoAM (NoSQL Abstract Model) – an
abstract and system independent data model for NoSQL
databases

 NoAM aims at exploiting the commonalities of their various data
models – but it also introduces abstractions to balance their
differences and variations

NoSQL Database Design 14

* NoAM – an abstract data model
for NoSQL databases

Luca Cabibbo

 Main commonalities of their various NoSQL data models

 NoSQL datastores share the common provision of having a
modeling data element that is a distribution, access and
manipulation unit (DAM unit)

 a data access unit

 more precisely, a maximal unit of consistency/atomic data
access and manipulation

 a unit of distribution

 each DAM unit is located on a single node of the cluster –
but in general different DAM units are distributed among
the nodes of the cluster

 in the various systems, a DAM unit can be

 a record/row – a document – a group of key-value pairs
sharing part of the key

 in NoAM, a DAM unit is called a block
NoSQL Database Design 15

The NoAM abstract data model

Luca Cabibbo

 Main commonalities of their various NoSQL data models

 NoSQL datastores also offer the ability to access just some
parts of a DAM unit – they have a modeling data element that is
a “smaller” data access unit (SDA unit)

 in the various systems, an SDA unit can be

 a column – a field – an individual key-value pair

 in NoAM, a SDA unit is called an entry

moreover, many datastores provide a notion of collection of
data access units

 in the various systems, a collection can be

 a table – a document collection

 in NoAM, a collection of DAM units (blocks) is called a
collection

NoSQL Database Design 16

The NoAM abstract data model

Luca Cabibbo

 The NoAM abstract data model

 a database is a set of collections – each collection has a
distinct name

 a collection is a set of blocks – each block is identified in its
collection by a block key

 a block is a non-empty set of entries

 each entry is a pair (ek,ev)

 ek is the entry key – unique within its block

 ev is a value (either a scalar or a complex value), called the
entry value

NoSQL Database Design 17

The NoAM abstract data model

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 18

Example: a NoAM database
username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game

Luca Cabibbo

 We consider here NoSQL database design – the problem of
representing persistent data of an application in a target NoSQL
database

 NoSQL databases are claimed to be “schema-less”

 however, the data of interest do show some structure, and
decisions on the organization of data are required

 specifically, to map application data to the modeling
elements (collections, tables, documents, key-value pairs)
available in the target datastore

NoSQL Database Design 19

* NoSQL database design for
next-generation web applications

Luca Cabibbo

 Consider a fictious online, web 2.0 game – e.g., some variant of
Ruzzle – which should manage various application objects,
including players, games, rounds, and moves

NoSQL Database Design 20

A running example

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 Consider a fictious online, web 2.0 game – e.g., some variant of
Ruzzle – which should manage various application objects,
including players, games, rounds, and moves

 assume for example that the target database is an extensible
record store

 what records (and tables) should we use?

 a distinct record for each different application object?

 or should we use each record to represent a group of related
objects? what is the grouping criterion?

 what columns should we use?

 a distinct column for each object field?

 or should we use each column to represent a group of
related fields? what is the grouping criterion?

NoSQL Database Design 21

A running example

Luca Cabibbo

 In NoSQL database design

 decisions on the organization of data are required, in any case

 these decisions are significant – as the data representation
affects major quality requirements – such as scalability,
performance, and consistency

 a randomly chosen data representation may not satisfy the
needed qualities

 how should we make design decisions to indeed support the
qualities of next-generation web applications?

NoSQL Database Design 22

NoSQL database design

Luca Cabibbo

 We focus here on database design for next-generation web
applications – also called scalable web applications, or scalable
simple OLTP-style applications

 foremost requirements of these applications

 data of interest are large and have a flexible structure

 data access is based on simple read-write operations

 horizontal scalability – data should be distributed over a
cluster of many servers

 high availability and good response time

 relaxed consistency guarantees – general ACID transactions
are typically unnecessary – however, a certain degree of
consistency is required, to easy application development –
e.g., eventual consistency or BASE

NoSQL Database Design 23

Next-generation web applications

Luca Cabibbo

 State-of-the-art in NoSQL database design

 a lot of best practices and guidelines

 but usually related to a specific datastore or class of
datastores

 neither a systematic methodology nor a high-level data model

 as in the case of relational database design

NoSQL Database Design 24

State of the art

Luca Cabibbo

 We propose the NoAM approach to NoSQL database design

 tailored to the requirements of next-generation web applications

 based on the NoAM abstract data model for NoSQL databases

 a high level/system independent approach – the initial design
activities are independent of any specific target systems

 a NoAM abstract database is first used to represent the
application data

 the intermediate representation is then implemented in a
target NoSQL datastore, taking into account its specific
features

NoSQL Database Design 25

* The NoAM approach to
NoSQL database design

Luca Cabibbo

 The NoAM approach to NoSQL database design is based on the
following main phases

 aggregate design – to identify the various classes of aggregate
objects needed in the application

 this activity is driven by use cases (functional requirements)
and scalability and consistency needs

 aggregate partitioning – aggregates are partitioned into smaller
data elements

 driven by use cases and performance requirements

 high-level NoSQL database design – aggregate are mapped to
the NoAM intermediate data model

 implementation – to map the intermediate representation to the
specific modeling elements of the target datastore

NoSQL Database Design 26

- Overview

Luca Cabibbo

 We start by considering application data objects…

NoSQL Database Design 27

Application data

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 … we group them in aggregates (decisions needed!) …

NoSQL Database Design 28

Aggregates

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 … we consider aggregates as complex-value objects…

NoSQL Database Design 29

Aggregates as complex-value objects

Player:mary : 
username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

 game : Game:2345, opponent : Player:mary ,
 game : Game:7425, opponent : Player:ann ,
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


Luca Cabibbo

 … we partition these complex values (decisions needed!) …

NoSQL Database Design 30

Aggregate partitioning

Player:mary : 
username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

 game : Game:2345, opponent : Player:mary ,
 game : Game:7425, opponent : Player:ann ,
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


Luca Cabibbo

 … and represent them into an abstract data model for NoSQL
databases (consequence of decisions) …

NoSQL Database Design 31

Data representation in NoAM

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game

Luca Cabibbo

 … and finally we map the intermediate representation to the data
structures of the target datastore (the approach specifies how)

NoSQL Database Design 32

Implementation

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2] …

2345 Player:mary Player:rick {…} {…}

table Game

Luca Cabibbo

 … and finally we map the intermediate representation to the data
structures of the target datastore (the approach specifies how)

NoSQL Database Design 33

Implementation

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

/Games/2345/-/id 2345

/Games/2345/-/firstPlayer Player:mary

/Games/2345/-/secondPlayer Player:rick

/Games/2345/-/rounds[0] { … }

/Games/2345/-/rounds[1] { … }

… …

Luca Cabibbo

 In our approach, we consider application data arranged in
aggregates

 the notion of aggregate comes from Domain-Driven Design
(DDD) – a popular object-oriented design methodology – and
from principles in the design of scalable applications

 aggregate design affects scalability and the scope of atomic
operations – and therefore, the ability to support relevant
integrity constraints

NoSQL Database Design 34

- Aggregates and aggregate design

Luca Cabibbo

 The design of scalable applications is discussed in a seminal
paper by Pat Helland – Life beyond distributed transactions: an
apostate’s opinion, CIDR 2007

 data should be organized as a set of complex-value objects
with unique identifiers – called entities or aggregates – each
aggregate is a “chunk” of related data, and is intended to be a
unit of data access and manipulation

 aggregates should govern data distribution – aggregates are
distributed among the nodes of the cluster, but each aggregate
is located on a single node

 atomic transactions can not span multiple aggregates – to avoid
the coordination overhead required by distributed transactions

 operations spanning multiple aggregates should be
implemented as multiple operations, each over a single
aggregate – using asynchronous messages and eventual
consistency

NoSQL Database Design 35

Design of scalable applications

Luca Cabibbo

 Domain-Driven Design (DDD, Eric Evans, 2003) is also based on
a similar notion of aggregate – DDD gives us other insights on
aggregate design

 each aggregate is a group of application objects (entities and
value objects) rooted in an entity

 an entity is a persistence object that has independent
existence and a unique identifier

 a value object is a persistent object, without an own identifier

 aggregate boundaries govern distribution and transactions

 each aggregate should be

 large enough, to accommodate all the data involved by some
integrity constraints or other business rules

 as small as possible, to reduce concurrency collisions – to
support performance and scalability requirements

NoSQL Database Design 36

Aggregates in Domain-driven design

Luca Cabibbo

 Aggregates in our running example are players and games

 but rounds are not – to support an integrity constraint of the
game

NoSQL Database Design 37

Example

mary : Player

username = "mary"
firstName = "Mary"
lastName = "Wilson"

rick : Player

username = "rick"
firstName = "Ricky"
lastName = "Doe"

score = 42

2345 : Game

id = 2345

firstPlayer secondPlayer

: GameInfo

games[0]

gameopponent
: GameInfo

games[0]

game opponent

: Round : Round

rounds[0] rounds[1]

: Move : Move

moves[0] moves[1]

: Move

moves[0]

: GameInfo

games[2]

: GameInfo

games[1]

: GameInfo

games[1]...

...

...

...

...

...

Luca Cabibbo

 At the application level, data is organized in aggregates

 each aggregate object is can be considered a complex-value
object, with a unique identifier

 a set of aggregate objects is a class

 a set of class form an application dataset

NoSQL Database Design 38

Application data model

Player:mary : 
username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

 game : Game:2345, opponent : Player:mary ,
 game : Game:7425, opponent : Player:ann ,
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


Luca Cabibbo

 To summarize, aggregates have the following characteristics

 an aggregate is a complex-value object

 each aggregate is a unit of data access and atomic
manipulation

 aggregates govern data distribution

 In NoSQL database design, we should map each aggregate to a
data modeling element having analogous features

NoSQL Database Design 39

Aggregates in NoSQL db design

Luca Cabibbo

 In NoSQL database design, we should map each aggregate to a
data modeling element having analogous features

 each aggregate should be mapped to a unit of data access,
atomic manipulation, and distribution

 therefore, a record/row, a document, or a group of related
key-value pairs – that is, a NoAM block

 classes of aggregates can then be mapped to NoAM collections

 the role for columns, document fields, or individual key-value
pairs (i.e., NoAM entries) has to be discussed

 we would like to abstract from the features of specific
datastores – NoAM enables us to do so

NoSQL Database Design 40

Aggregates in NoSQL db design

Luca Cabibbo

 An application dataset can be represented in NoAM as follows

 the application dataset is represented by a NoAM database

 each class of aggregates is represented by a collection

 the class name is used as collection name

 each aggregate object is represented by a block

 the aggregate identifier is used as block key

 each aggregate object is represented by one or more entries in
the corresponding block

 the complex value of the aggregate object is partitioned into
one or more entry values

NoSQL Database Design 41

Representing aggregates in NoAM

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 42

Representing aggregates in NoAM

Player:mary : 
username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

 game : Game:2345, opponent : Player:mary ,
 game : Game:7425, opponent : Player:ann ,
 game : Game:1241, opponent : Player:johnny 

}


Game:2345 : 
id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


… …

… …

… …

mary

… …

… …

… …

… …

rick

Player

… …

… …

… …

2345

Game

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 43

Example: partitioning of aggregates

Player:mary : 
username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


Player:rick : 
username : "rick",
firstName : "Ricky",
lastName : "Doe",
score : 42,
games : {

 game : Game:2345, opponent : Player:mary ,
 game : Game:7425, opponent : Player:ann ,
 game : Game:1241, opponent : Player:johnny 

}
 Game:2345 : 

id : "2345",
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 44

Example: aggregates in NoAM
username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

username “rick”

firstName “Ricky”

lastName “Doe”

score 42

games[0]  game : Game:2345, opponent : Player:mary 

games[1]  game : Game:7425, opponent : Player:ann 

games[2]  game : Game:1241, opponent : Player:johnny 

rick

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game

Luca Cabibbo

 In representing an aggregate object in NoAM, we use one or more
entries – to partition the complex value of the aggregate

 aggregate partitioning affects performance of data access and
manipulation operations

 this partitioning can be based on

 basic (predefined) data representation strategies

 custom data representations

NoSQL Database Design 45

- Aggregate partitioning

Luca Cabibbo

 Entry per Aggregate Object (EAO)

 an aggregate object is represented by a single entry

 the entry value is the whole complex value – the entry key is
empty

NoSQL Database Design 46

Entry per Aggregate Object (EAO)




username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


mary

Luca Cabibbo

 Entry per Top-level Field (ETF)

 an aggregate object is represented by multiple entries – a
distinct entry for each top-level field of the complex value

 the entry value is the field value – the entry key is the field
name

NoSQL Database Design 47

Entry per Top-level Field (ETF)

username “mary”

firstName “Mary”

lastName “Wilson”

games

{
 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}

mary

Luca Cabibbo

 Entry per Atomic Value (EAV)

 an aggregate object is represented by multiple entries – a
distinct entry for each atomic value in the complex value

 the entry value is the atomic value – the entry key is the
“access path” to the atomic value

NoSQL Database Design 48

Entry per Atomic Value (EAV)

username “mary”

firstName “Mary”

lastName “Wilson”

games[0].game Game:2345

games[0].opponent Player:rick

games[1].game Game:2611

games[1].opponent Player:ann

mary

Luca Cabibbo

 The basic data representation strategies can be suited in some
cases – but we often need to partition aggregates in custom ways

 aggregate partitioning can be driven by data access operations
– since it affects the performance of database operations

 each element of a partition (i.e., an entry) can represent either a
scalar value or a complex value – the usage of “entries” with a
complex value is a common practice in NoSQL datastores –
e.g., Protocol Buffers, Avro schemas

NoSQL Database Design 49

Custom aggregate partitioning

Luca Cabibbo

 Guidelines for aggregate partitioning – adapted from Conceptual
Database Design (Batini, Ceri, Navathe, 1992)

 if an aggregate is small in size, or all or most of its data are
accessed or modified together – then it should be represented
by a single entry

 if an aggregate is large in size, and there are operations that
frequently access or modify only specific portions of the
aggregate – then it should be represented by multiple entries

 if two or more data elements are frequently accessed or
modified together – then they should belong to the same entry

 if two or more data elements are usually accessed or modified
separately – then they should belong to distinct entries

NoSQL Database Design 50

Guidelines for aggregate partitioning

Luca Cabibbo

 Operations for our online game

1. when a player connects to the application – the aggregate for
the player should be retrieved

2. when a player selects a game to continue – the aggregate for
the game should be retrieved

3. when a player completes a round for a game – the aggregate
for the game should be updated, by adding the new round

4. when a player invites a friend for playing a new game – an
aggregate for a new game should be created, and the
aggregate for the opponent players should be updated, by
adding the new game

 For example, what does operation 3 suggest?

 each round should be represented using a distinct entry of the
corresponding game aggregate

NoSQL Database Design 51

Aggregate partitioning: Example

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 52

Aggregate partitioning: Example

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id 2345

firstPlayer Player:mary

secondPlayer Player:rick

rounds[0]  moves : … , comments : … 

rounds[1]  moves : … , actions : … , spell : … 

2345

Game

Luca Cabibbo

 NoAM defines a language to specify aggregate partitioning – and
therefore, data representations

 the language can be used to describe or document a certain
aggregate partitioning

more importantly, it can be used in a mapping system

 the database designer uses the language to specify a data
representation – in a system-independent way

 the mapping framework interprets the specification – to
represent aggregates in the specific target datastore and to
handle operations over them

 The language has an XPath-like syntax – and we illustrate it by
means of examples

NoSQL Database Design 53

- A language for data representations

Luca Cabibbo

 Rule /*/* specifies strategy Entry per Aggregate Object (EAO)

 the first * matches with aggregate classes

 the second * matches with aggregate identifiers

 the rule means “use an entry for each distinct aggregate class
and distinct aggregate identifier”

NoSQL Database Design 54

The language – by examples




username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


mary

Luca Cabibbo

 Rule /*/*/* specifies strategy Entry per Top-level Field (ETF)

 the third * matches with top-level fields of aggregates

 the rule means “use an entry for each distinct aggregate class,
aggregate identifier, and top-level field”

NoSQL Database Design 55

The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games

{
 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}

mary

Luca Cabibbo

 A data representation is specified by a sequence of rules

 /Player/*/* – “use ETF for players”

 /Game/* – “use EAO for games”

NoSQL Database Design 56

The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games

{
 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}

mary

Player




id : 2345,
firstPlayer : Player:mary,
secondPlayer : Player:rick,
rounds : {

 moves : … , comments : … ,
 moves : … , actions : … , spell : … 

}


2345

Game

Luca Cabibbo

 It is possible to have more rules over a same aggregate class

 /Player/*/games[*] – “use an entry for each game played by a
player”

 /Player/*/* – “use ETF for the remaining data of each player”

NoSQL Database Design 57

The language – by examples

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Luca Cabibbo

 It is possible to have more rules over a same aggregate class

 /Player/*/games[*] – “use an entry for each game played by a
player”

 /Player/* – “use EAO for the remaining data of each player”

NoSQL Database Design 58

The language – by examples




username : “mary”,
firstName : “Mary”,
lastName : “Wilson”



games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Luca Cabibbo

 In the implementation phase, we map the intermediate data
representation to the specific data modeling elements of the target
NoSQL datastore

 given that the NoAM data model generalizes the features of the
various systems, while keeping their major aspects, it is rather
straightforward to perform this activity

 Please note that the implementation takes also care of mapping
operations – specifically, CRUD operations (create, read, update,
delete) over aggregate objects to specific data access operations

 we do not discuss this issue here

 please find more details in the references

NoSQL Database Design 59

- Implementation

Luca Cabibbo

 Oracle NoSQL is a key-value store – a database is a collection of
key-value pairs

 values are binary strings, opaque to the datastore

 a key is composed of two parts

 the major key is a non-empty sequence of strings

 the minor key is a (possibly-empty) sequence of strings

 e.g, /Player/mary/-/username

 the major key controls data distributions – key-value pairs
having the same major key are allocated in a same node

 atomic operations on individual key-value pairs – but also on
groups of key-value pairs having the same major key

NoSQL Database Design 60

Oracle NoSQL: Implementation

Luca Cabibbo

 Mapping from NoAM to Oracle NoSQL

 a key-value pair for each entry

 the major key is composed of

 the collection name

 the block key (i.e., the aggregate identifier)

 the minor key represents the entry key (i.e., an access path)

 the value represents the entry value

 it can be either a simple value, or

 the serialization of a complex value – e.g., in JSON

NoSQL Database Design 61

Oracle NoSQL: Implementation

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 62

Oracle NoSQL: Implementation

key value

/Player/mary/- { “username” : “mary”, “firstName” : “Mary”, “lastName” : “Wilson”, “games” : […] }

/Player/rick/- { “username” : “rick”, “firstName” : “Ricky”, lastName : “Doe”, “score” : “42”, “games” : […] }

/Game/2345/- { “id” : “2345”, “firstPlayer” : “Player:mary”, “secondPlayer” : “Player:rick”, “rounds” : […] }




username : "mary",
firstName : "Mary",
lastName : "Wilson",
games : {

 game : Game:2345, opponent : Player:rick ,
 game : Game:2611, opponent : Player:ann 

}


mary

Player

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 63

Oracle NoSQL: Implementation

key value

/Player/mary/-/username mary

/Player/mary/-/firstName Mary

/Player/mary/-/lastName Wilson

/Player/mary/-/games[0] { “game” : “Game:2345”, “opponent” : “Player:rick” }

/Player/mary/-/games[1] { “game” : “Game:2611”, “opponent” : “Player:ann” }

… …

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

Luca Cabibbo

 MongoDB is a document store – a database is a set of documents

 each document has a complex value and an identifier,
and documents are organized in collections

 Mapping from NoAM to MongoDB

 a document collection for each NoAM collection (aggregate
class)

 a main document for each block (aggregate)

 a top-level field for each entry

 the special _id field for the block key (aggregate identifier)

 atomic operations on individual documents – or on their fields

NoSQL Database Design 64

MongoDB: Implementation

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 65

MongoDB: Implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id document

mary

{
“_id” : “mary”,
“username” : “mary”,
“firstName” : “Mary”,
“lastName” : “Wilson”,
“games[0]” : { “game” : “Game:2345”, “opponent” : “Player:rick” },
“games[1]” : { “game” : “Game:2611”, “opponent” : “Player:ann” }

}

collection Player

Luca Cabibbo

 A different implementation

 reconstruct structure of complex values

NoSQL Database Design 66

MongoDB: Alternative implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

id document

mary

{
“_id” : “mary”,
“username” : “mary”,
“firstName” : “Mary”,
“lastName” : “Wilson”,
“games” : [{ “game” : “Game:2345”, “opponent” : “Player:rick” },

{ “game” : “Game:2611”, “opponent” : “Player:ann” }]
}

collection Player

Luca Cabibbo

 Amazon DynamoDB is an extensible record store

 a database is a set of tables

 each table is a set of items

 each item contains a set of attributes,
each with a name and a value

 each table has a primary key – composed of a hash partition
attribute and an optional range attribute

 the partition attribute controls distribution of items

 atomic operations on individual items – or on their columns

 Mapping from NoAM to DynamoDB

 a table for each collection (aggregate class)

 an item for each block (aggregate) – whose primary key is the
block key (aggregate identifier)

 an attribute for each entry
NoSQL Database Design 67

DynamoDB: Implementation

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 68

DynamoDB: Implementation

username “mary”

firstName “Mary”

lastName “Wilson”

games[0]  game : Game:2345, opponent : Player:rick 

games[1]  game : Game:2611, opponent : Player:ann 

mary

Player

username firstName lastName score games[0] games[1] games[2] …

mary Mary Wilson {…} {…}

rick Ricky Doe 42 {…} {…} {…}

table Player

id firstPlayer secondPlayer rounds[0] rounds[1] rounds[2] …

2345 Player:mary Player:rick {…} {…}

table Game

Luca Cabibbo

 NoAM (NoSQL Abstract Model) is a high-level approach to NoSQL
database design for next-generation web applications

 a high-level approach

 initial design activities are independent of any specific target
systems

 it is based on NoAM

 NoAM is an intermediate, abstract data model for NoSQL
databases – which exploits the commonalities of their
various data models – but also introduces abstractions to
balance their differences and variations

NoSQL Database Design 69

- Conclusion (NoAM)

Luca Cabibbo

 Open issues

 NoAM data model

 other abstractions are needed to represent further data
modeling elements available in NoSQL datastores

 further abstractions related to relevant metadata – e.g.,
versions and timestamps, to support concurrency control
and consistency management

 derived data and materialized views

 so far, we have assumed that data is represented in a non-
redundant way – some redundancy is usually suggested in
NoSQL databases, to improve performance – but note that
view maintenance could affect consistency negatively

 support to multi-aggregate transactions is required

NoSQL Database Design 70

Conclusion (NoAM data model)

Luca Cabibbo

 Open issues

 NoAM approach

 the proposed guidelines can propose conflicting suggestions
– therefore, the application of the approach might result in a
number of candidate data representations, rather than to a
single one

 tools can help the designer to assess a preferred solution

 NoSQL database design for different settings

 for example, to support query-intensive applications and
analytical queries

NoSQL Database Design 71

Conclusion (NoAM approach)

Luca Cabibbo

 ONDM (Object-NoSQL Datastore Mapper) is a framework that
provides application developers with

 a uniform access towards a variety of NoSQL datastores

 the ability to map application data to different data
representations, in a flexible way

 Main features of ONDM

 object-oriented API, based on Java Persistence API (JPA)

 transparent access to various NoSQL datastores – such as
Oracle NoSQL, Redis, MongoDB, CouchBase, and Cassandra

 internal representation based on NoAM

 flexible data representations – based on the NoAM language
for data representations

NoSQL Database Design 72

* ONDM
(Object-NoSQL Datastore Mapper)

Luca Cabibbo

 A layered architecture

 API – based on JPA, offers
CRUD operations to
manipulate aggregates

 internal aggregate manager
– conversion between
aggregate objects and an
internal representation
(JSON) – cache mgmt

 data representation manager
– in NoAM, wrt the specified
data representation

 datastore adapters –
conversion between NoAM
and specific data structures
and operations

Application

create, read, update, delete
(of application objects)

Internal
Representation

{
 "id" : "2345",
 "roundCount" : "2",
 "firstPlayer" : "Player:mary",
 "secondPlayer" : "Player:rick",
 "rounds" : [...]
}

Game:2345

JSON

Java

put, get, delete
(of complex‐value objects)

Data Representation

NoAM

Game : 2345

id : 2345

roundCount : 2

firstPlayer : Player:mary

secondPlayer : Player:rick

rounds[0] :  moves:…, comments:... 

rounds[1] :  moves:…, comments:... 

Oracle NoSQL
Datastore

Oracle NoSQL
Datastore Adapter

Oracle NoSQL
API operations

DynamoDB
Datastore

DynamoDB
Datastore Adapter

DynamoDB
API operations

id rc firstPlayer secondPlayer rounds[0]

2345 2 Player:mary Player:rick ...

rounds[1]

...

Game/2345/‐/id

Game/2345/‐/roundCount

Game/2345/‐/firstPlayer

Game/2345/‐/secondPlayer

Game/2345/‐/rounds[0]

Game/2345/‐/rounds[1]

2345

2

Player:mary

Player:rick

{ moves:[…], comments:[…] }

{ moves:[…], comments:[…] }

...

/Player/*/games[*]
/Player/*

/Game/*/rounds[*]
/Game/*/*

Data Representation
Language

Cache

put, get, delete,
multiPut, multiGet, multiDelete

(of entries and blocks)

NoSQL Database Design 73

- Architecture of ONDM

Luca Cabibbo

 The database design activity can result in a number of candidate
data representations – rather than to a single one

 consider again the operations for our online game

2. when a player selects a game to continue – the aggregate for
the game should be retrieved

3. when a player completes a round for a game – the aggregate
for the game should be updated, by adding the new round

 operations 2 and 3 suggest different choices for the
representation of rounds – (i) all together in a single entry or
(ii) using a distinct entry for each round

 In this case, experiments are needed to assess the most suitable
design solution – and ONDM can help in performing them

 an important feature is the ability to select a desired data
representation in a declarative way – using the NoAM language
for data representations

NoSQL Database Design 82

* A case study in NoSQL db design

Luca Cabibbo

 To decide between the various candidate representations, a few
experiments can help

 the target datastore is Oracle NoSQL (single node)

 three candidate representations

 an entry for a whole game – EAO

 /Game/*/rounds[*] + /Game/*/* – Rounds+ETF

 /Game/*/rounds[*] + /Game/* – Rounds+EAO

 various workloads

 game retrieval

 round addition

 mixed – 80% game retrievals + 20% round additions

 each game is 8kb, each round is 0.5kb

 database size is in GB, timings are ms per operation

NoSQL Database Design 83

A case study in NoSQL db design

Luca Cabibbo

Fare clic per modificare lo stile del
titolo

Luca Cabibbo NoSQL Database Design 84

A case study in NoSQL db design

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

Game Retrieval

EAO Rounds+ETF Rounds+EAO

0

0,5

1

1,5

2

2,5

3

3,5

4

2 4 6 8 10 12 14 16

Round Addition

EAO Rounds+ETF Rounds+EAO

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16

Mixed Load (80/20)

EAO Rounds+ETF Rounds+EAO

Luca Cabibbo

 The experiments show that aggregate partitioning has indeed
impact on the performance of the various operations

 in general, when using a NoSQL database, decisions on the
organization of data are required

 these decisions are significant – as the data representation
affects major quality requirements – such as scalability,
performance, and consistency

NoSQL Database Design 85

- Conclusion (case study)

