Esercizi di Informatica Teorica Calcolabilità nel modello di Turing

a cura di Luca Cabibbo e Walter Didimo

Sommario

- calcolabilità in vari contesti
- riduzioni e calcolabilità
- dimostrazioni di decidibilità di problemi
- dimostrazioni di indecidibilità di problemi

```
notazioni sul livello degli esercizi: (*) facile, (**) non difficile (***) media complessità, (****) difficile, (*****) quasi impossibile
```

La T-calcolabilità

definizioni di T-calcolabilità in vari contesti:

• calcolo di funzioni parziali di stringa:

• decisione (calcolo) di predicati:

```
un predicato su \Sigma^* è una funzione p: (\Sigma^*)^n \to \{\text{vero, falso}\}; p è <u>T-decidibile</u> se esiste una MT che calcola p (altrimenti p è <u>T-indecidibile</u>); p è <u>T-semi-decidibile</u> se esiste una MT che termina in uno stato finale per ogni <u>x</u> per cui p(<u>x</u>) è vero, mentre non termina o termina in uno stato non finale per ogni <u>x</u> per cui p(<u>x</u>) è falso
```

La T-calcolabilità

esemplificazione di linguaggio:

```
T-calcolabile = calcolabile
```

T-decidibile = decidibile

T-semi-decidibile = semi-decidibile

alcuni predicati notevoli:

- appartenenza di una stringa ad un linguaggio (riconoscimento di un linguaggio)
- il linguaggi di tipo 0 sono semi-decidibili (accettati da una MT)
- il linguaggi di tipo 1 sono decidibili (riconosciuti da una MT)
- il predicato della fermata (HALT) è indecidibile ma semi-decidibile

Riducibilità di problemi

- una <u>istanza</u> di un problema P è un insieme di specifiche (dati di input) che servono a definire completamente il problema P <u>esempio</u>: sia P il seguente problema: determinare il numero degli abitanti della città x che hanno i capelli di colore y l'<u>istanza generica</u> di P è la coppia <x,y> una <u>istanza specifica</u> di P è ad esempio <Roma, verde>
- una <u>riduzione</u> di un problema A in un problema B è una funzione f che trasforma <u>ogni</u> istanza x di A in una <u>particolare</u> istanza $f(x)=y_x$ di B, in modo tale che trovare una soluzione per il problema B con istanza y_x <u>equivale</u> a trovare una soluzione per il problema A con istanza x; si scrive anche $A \rightarrow^f B$

Riducibilità e decidibilità

implicazioni importanti:

- se $A \rightarrow^f B$ ed f è calcolabile allora:
 - <u>B</u> è "difficile" almeno quanto <u>A</u> (cioè B è più difficile di A o è difficile quanto A), poiché risolvere B su un particolare insieme di istanze (l'insieme {f(x): x è istanza di A}) equivale a risolvere A su ogni possibile istanza x
 - B è decidibile ⇒ A è decidibile
 - A è indecidibile \Rightarrow B è indecidibile

tecnica per dimostrare che un problema P è decidibile: cerco un problema Q decidibile tale che P \rightarrow^f Q, con f calcolabile tecnica per dimostrare che un problema P è indecidibile: cerco un problema Q indecidibile tale che Q \rightarrow^f P, con f calcolabile

Esercizio 1(****) si considerino i due seguenti problemi:

- il problema <u>CAMMINO</u>: dato un grafo G diretto e due suoi vertici x ed y, esiste un cammino diretto da x ad y?
- il problema <u>APPARTENENZA</u>: dato un linguaggio $L \subseteq \Sigma^*$ non contestuale ed una stringa $w \in \Sigma^*$, w appartiene ad L? sapendo che il problema <u>APPARTENENZA</u> è decidibile, dimostrare la decidibilità del problema <u>CAMMINO</u>.

Soluzione

cerchiamo una f calcolabile, tale che CAMMINO \rightarrow APPARTENENZA

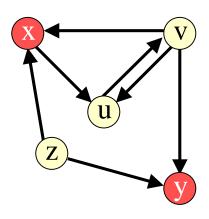
- una istanza del problema <u>CAMMINO</u> è una tripla <G,x,y>
- una istanza del problema APPARTENENZA è una coppia <L,w>

- definiamo una funzione f che a partire da una istanza <G,x,y> di $\underline{\text{CAMMINO}}$ produce una istanza <L,w $>_{<$ G,x,y $>}$ di $\underline{\text{APPARTENENZA}}$
 - <u>L è il linguaggio definito dalla grammatica</u> <V_T,V_N, S, P>:
 - V_T ha un simbolo z per ogni vertice z di G
 - V_N ha un simbolo Z per ogni vertice z di G più l'assioma S
 - P è formato dalle seguenti produzioni:
 - $-S \rightarrow zZ$ e $Z \rightarrow z$ per ogni vertice z di G $-U \rightarrow Z$ per ogni arco (u, z) di G
 - w è la stringa "xy"

 $f(\langle G,x,y\rangle) = \langle L,w\rangle_{\langle G,x,y\rangle}$ è calcolabile, poiché è una semplice "traslitterazione" (traduzione meccanica in numero finito di passi)

• vediamo un <u>esempio di applicazione di f</u>: sia <G,x,y> la seguente

istanza



$$\begin{array}{l} costruiamo \ l'istanza \ f \ (<\!G,\!x,\!y>) = <\!L,\!w>_{<\!G,x,y>} \\ V_T = \{u,\,v,\,z,\,x,\,y\}, \ V_N = \{U,\,V,\,Z,\,X,\,Y,\,S\}, \ S = assioma \\ produzioni: \quad S \to uU \mid vV \mid zZ \mid xX \mid yY \\ \qquad \qquad U \to u \quad V \to v \quad Z \to z \quad X \to x \quad Y \to y \\ \qquad U \to V \quad V \to U |X|Y \quad Z \to X|Y \quad X \to U \\ stringa \ w = xy \end{array}$$

- dobbiamo dimostrare che esiste un cammino da x ad y in $G \Leftrightarrow w=xy$ appartiene ad L
 - <u>supponiamo che esista un cammino da x ad y in G</u>, e che sia indicato al modo: $x, v_1, v_2, ..., v_n, y$; allora, per costruzione, esistono nella grammatica che genera L le seguenti produzioni: $S \rightarrow xX, \ X \rightarrow V_1, V_1 \rightarrow V_2, ..., V_n \rightarrow Y, Y \rightarrow y$ quindi, la stringa w=xy è generata dalla grammatica, cioè $w \in L$
 - <u>supponiamo viceversa che w=xy∈L</u>; una derivazione per w è necessariamente del tipo: $S|_xX|_xV_1|_xV_2|_, ..., |_xV_n|_xY|_xy$, e dunque esistono in G gli archi $(x, v_1), (v_1, v_2), ..., (v_n, y)$, che definiscono il cammino $x, v_1, v_2, ..., v_n$, y

Esercizio 2(***) dimostrare la decidibilità del seguente problema (IMPLICAZIONE): siano dati un insieme di proposizioni $S=\{P_1, P_2, ..., P_n\}$ ed un insieme di implicazioni logiche su S, $I=\{P_i \Rightarrow P_j : i, j \in \{1, ..., n\}\}$; date due proposizioni P_h e P_k di S, esiste una sequenza di implicazioni logiche del tipo:

$$P_h \Rightarrow P_{i_1} \Rightarrow P_{i_2} \Rightarrow ... \Rightarrow P_{i_r} \Rightarrow P_k$$
?

Soluzione

riduciamo il problema <u>IMPLICAZIONE</u> al problema <u>CAMMINO</u>, il quale è noto essere decidibile;

- una istanza del problema <u>CAMMINO</u> è una tripla <G,x,y>
- una istanza del problema $\underline{\text{IMPLICAZIONE}}$ è una quadrupla <S, I, P_h , P_k >

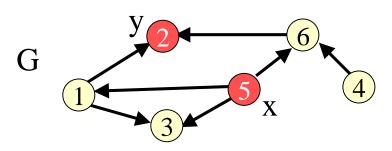
- <u>definiamo la seguente funzione</u> $f(\langle S, I, P_h, P_k \rangle) = \langle G, x, y \rangle_{\langle S, I, P_h, P_k \rangle}$
 - G ha un vertice r per ogni proposizione P_r di S;
 - G ha un arco (i, j) per ogni implicazione $P_i \Rightarrow P_j$ di I;
 - $\bullet x = h$
 - y = k
- esempio di costruzione tramite f:

$$S = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

$$I = \{P_1 \Rightarrow P_2, P_5 \Rightarrow P_3, P_1 \Rightarrow P_3, P_6 \Rightarrow P_2, P_5 \Rightarrow P_1, P_4 \Rightarrow P_6, P_5 \Rightarrow P_6\}$$

$$P_h = P_5$$

$$P_k = P_2$$



- <u>dimostriamo la correttezza della riduzione</u>: dobbiamo provare che esiste una sequenza di implicazioni da P_h a P_k \Leftrightarrow esiste un cammino diretto da x ad y in G.
- supponiamo che esista una sequenza di implicazioni del tipo:

$$P_h \Rightarrow P_{i_1} \Rightarrow P_{i_2} \Rightarrow ... \Rightarrow P_{i_r} \Rightarrow P_k$$
 allora in G esistono gli archi (h, i₁), (i₁, i₂), ... (i_r, k), e poiché x = h ed y = k, allora tali archi definiscono un cammino da x ad y in G; - viceversa, supponiamo esista un cammino x, i₁, i₂, ..., i_r, y in G; questo implica che esistono gli archi (x, i₁), (i₁, i₂), ... (i_r, y) in G; poiché ad ogni arco di G corrisponde una implicazione in I, e poiché x=h ed y=k, allora esistono le seguenti implicazioni:

$$P_h \! \Longrightarrow \! P_{i_1} \! \Longrightarrow \! P_{i_2} \! \Longrightarrow \! ... \! \Longrightarrow \! P_{i_r} \! \Longrightarrow \! P_k$$

Problemi indecidibili

tecnica per dimostrare che un problema P è indecidibile: cerco un problema Q indecidibile tale che $Q \rightarrow^f P$ ed f è calcolabile

- occorre conoscere almeno un problema Q indecidibile
- esistono <u>due problemi indecidibili notevoli</u> (archetipi):
 - <u>il problema della fermata di una MT (HALT)</u>: data una MT M ed una stringa x, M terminerà la computazione su x?
 - <u>il problema delle corrispondenze di Post (PCP)</u>: sia $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ un insieme finito di coppie di stringhe sull'alfabeto Σ ; esiste una sequenza $i_1, i_2, ..., i_k$ di indici in $\{1,...,n\}$ anche ripetuti tale che: $u_{i_1} u_{i_2} u_{i_3} ... u_{i_k} = v_{i_1} v_{i_2} v_{i_3} ... v_{i_k}$? (nota: la sequenza può essere di lunghezza k qualunque)

Esercizio 3(****) dimostrare l'indecidibilità del seguente problema (INCLUSIONE): date due MT, M_1 ed M_2 è vero che $L(M_1) \subseteq L(M_2)$?

Soluzione

dimostriamo che il problema HALT è riducibile al problema INCLUSIONE, cioè riduciamo la generica istanza di HALT ad una particolare istanza del problema INCLUSIONE, in modo tale che la riduzione sia calcolabile;

- analizziamo le istanze dei due problemi:
- una istanza di HALT è costituita da una MT M e da una stringa w
- una istanza di INCLUSIONE è costituita da due MT, M₁ ed M₂

- definiamo la funzione $f(\langle M, w \rangle) = \langle M_1, M_2 \rangle_{\langle M, w \rangle}$ al modo:
- $-M_1$ è una MT che riconosce solo w (è costruita come un ASF)
- $-\mathbf{M}_2 = \mathbf{M}$

la funzione f è ovviamente calcolabile;

• dimostriamo che decidere se $L(M_1) \subseteq L(M)$ <u>equivale</u> a decidere se M si ferma quando calcola w:

per la costruzione fatta, decidere se $L(M_1) \subseteq L(M)$ <u>equivale</u> a decidere se $w \in L(M)$ (perché $L(M_1) = \{w\}$); d'altronde, decidere se $w \in L(M)$ <u>equivale</u> a decidere se M si ferma accettando w oppure no.

Esercizio 4(*****) dimostrare l'indecidibilità del seguente problema (INTERSEZIONE): date due grammatiche non contestuali G_1 e G_2 , è vero che $L(G_1) \cap L(G_2) = \emptyset$?

Soluzione

cerchiamo una riduzione: PCP \rightarrow^f INTERSEZIONE

- analizziamo le istanze dei due problemi:
 - istanza di PCP: $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ su \sum
 - istanza di Intersezione: due CFG, G₁ e G₂
- definiamo la funzione $f(\langle C, \Sigma \rangle) = \langle G_1, G_2 \rangle_{\langle C, \Sigma \rangle}$ al modo:

- introduciamo n simboli: $a_1, a_2, ..., a_n$ - G_1 è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita dalle seguenti produzioni: $S_1 \rightarrow u_i a_i$, $S_1 \rightarrow u_i S_1 a_i$ (i = 1,..., n) - G_2 è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita dalle seguenti produzioni: $S_2 \rightarrow v_i a_i$, $S_2 \rightarrow v_i S_2 a_i$ (i = 1,..., n)
- dimostriamo che decidere se esiste una sequenza di indici i_1 , i_2 , ..., i_k tale che u_{i_1} u_{i_2} u_{i_3} $u_{i_k} = v_{i_1}$ v_{i_2} v_{i_3} ... v_{i_k} equivale a decidere se $L(G_1) \cap L(G_2) = \emptyset$ secondo la costruzione fatta: si osserva che $L(G_1) = \{u_{i_1} \ u_{i_2} \ u_{i_3} \ \ u_{i_m} \ a_{i_m} \ \ a_{i_3} \ a_{i_2} \ a_{i_1} \ \forall m \in \mathbf{N} \ ed \ i_j \in \{1, ..., n\} \ \}$ $L(G_2) = \{v_{i_1} \ v_{i_2} \ v_{i_3} \ \ v_{i_m} \ a_{i_m} \ \ a_{i_3} \ a_{i_2} \ a_{i_1} \ \forall m \in \mathbf{N} \ ed \ i_j \in \{1, ..., n\} \ \}$ ne segue che $w \in L(G_1) \cap L(G_2) \iff w = u_{i_1} \ u_{i_2} \ u_{i_3} \ ... \ u_{i_m} \ a_{i_m} \ \ a_{i_3} \ a_{i_2} \ a_{i_1}$ $= v_{i_1} \ v_{i_2} \ v_{i_3} \ ... \ v_{i_m} \ a_{i_m} \ \ a_{i_3} \ a_{i_2} \ a_{i_1} \iff u_{i_1} \ u_{i_2} \ u_{i_3} \ ... \ u_{i_m} = v_{i_1} \ v_{i_2} \ v_{i_3} \ ... \ v_{i_m}$

quindi, $L(G_1) \cap L(G_2) = \emptyset \Leftrightarrow \underline{\text{non esiste}}$ una sequenza di indici $i_1, i_2, ..., i_k$ tale che $u_{i_1} u_{i_2} u_{i_3} u_{i_k} = v_{i_1} v_{i_2} v_{i_3} ... v_{i_k}$; dunque, sulla particolare istanza costruita per il problema INTERSEZIONE, rispondere al problema PCP equivale a rispondere al problema INTERSEZIONE

Esercizio 5(*****) dimostrare l'indecidibilità del seguente problema (AMBIGUITA'): data una grammatica G non contestuale, è vero che G è ambigua?

Soluzione

cerchiamo una riduzione: PCP \rightarrow AMBIGUITA'

- analizziamo le istanze dei due problemi:
 - istanza di PCP: $C = \{(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)\}$ su \sum
 - istanza di AMBIGUITA': una CFG G

- definiamo la funzione $f(\langle C, \Sigma \rangle) = \langle G \rangle_{\langle C, \Sigma \rangle}$ al modo:
 - introduciamo n simboli: a₁, a₂, ..., a_n
 - -G è la CFG su $\Sigma \cup \{a_1, a_2, ..., a_n\}$ definita al modo:

$$\begin{split} S &\to S_1 | S_2 \;, \\ S_1 &\to u_i a_i \;, \; S_1 \to u_i \; S_1 \; a_i \qquad (i=1,...,n) \\ S_2 &\to v_i a_i \;, \; S_2 \to v_i \; S_2 \; a_i \qquad (i=1,...,n) \\ \text{osserviamo che L(G)} &= \{u_{i_1} \; u_{i_2} u_{i_3} \; \; u_{i_m} \; a_{i_m} \; \; a_{i_3} \; a_{i_2} \; a_{i_1} \;, \\ v_{i_1} \; v_{i_2} \; v_{i_3} \; \; v_{i_m} \; a_{i_m} \; \; a_{i_3} \; a_{i_2} \; a_{i_1} \; \forall m \in \mathbf{N} \; \text{ed} \; i_j \in \{1, \; ..., \; n\} \; \} \end{split}$$

• dimostriamo che decidere se esiste una sequenza di indici i_1 , i_2 , ..., i_k tale che u_{i_1} u_{i_2} u_{i_3} $u_{i_k} = v_{i_1}$ v_{i_2} v_{i_3} ... v_{i_k} equivale a decidere se G, così come definita, è ambigua:

Gè ambigua \Leftrightarrow esiste una stringa w di L(G) ottenibile con due derivazioni distinte; d'altronde, data una stringa $u_{i_1} u_{i_2} u_{i_3} \dots u_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} di L(G)$, esiste <u>una sola derivazione</u> che la genera <u>a partire da S_1 </u>; tale derivazione è la seguente: $S_1 \mid - u_{i_1} S_1 a_{i_1} \mid - u_{i_1} u_{i_2} S_1 a_{i_2} a_{i_1} \mid - ... \mid - u_{i_1} u_{i_2} ... u_{i_{m-1}} S_1 a_{i_{m-1}} ... a_{i_2} a_{i_1}$ $-u_{i_1} u_{i_2} u_{i_3} \dots u_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1}$ analogamente, data una stringa v_{i_1} v_{i_2} v_{i_3} v_{i_m} a_{i_m} a_{i_3} a_{i_1} di L(G), esiste una sola derivazione che la genera a partire da S₂; quindi, esistono due derivazioni distinte per una stringa di L(G) $w = x_{i_1} x_{i_2} x_{i_3} \dots x_{i_m} a_{i_m} \dots a_{i_3} a_{i_2} a_{i_1} \Leftrightarrow una derivazione è ottenuta a$ partire da S_1 e l'altra a partire da $S_2 \Leftrightarrow x_{i_1} x_{i_2} x_{i_3} \dots x_{i_m} = u_{i_1} u_{i_2} u_{i_3} \dots$ $u_{i_m} = v_{i_2} v_{i_3} \dots v_{i_m}$

Esercizi da svolgere sulla indecidibilità

Esercizio 6(***) dimostrare l'indecidibilità dei seguenti problemi:

- EQUIVALENZA: dati due linguaggi non contestuali L_1 ed L_2 è vero che $L_1 = L_2$?
- AMBIGUITA'1: dato un linguaggio L non contestuale, L è inerentemente ambiguo?