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Abstract 

Architectural tactics are fundamental design decisions. They are the building blocks for both arc-

hitectural design and analysis. A catalog of architectural tactics has now been in use for several 

years in academia and industry.  This report illustrates the use of this catalog in industrial applica-

tions, describing how tactics can be used in both design and analysis. The report further shows 

how the needs of practice have caused the catalog of availability tactics to be updated, but demon-

strates that the underlying structure of the tactics categorization has remained stable.  Finally, a 

real-world example is provided of the application of the updated set of availability tactics, show-

ing how applying tactics illuminates design decisions, as guided by associated heuristics and ana-

lytic models.  
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1 Introduction 

The process of designing and analyzing software architectures is complex. Architectures are de-

termined by requirements (principally quality attribute requirements), which are in turn deter-

mined by an organization‟s business goals and constraints. But moving from the domain of re-

quirements to the domain of architecture has historically been an art more than a science.  

Architectural design is a minimally constrained search through a vast multi-dimensional space of 

possibilities. The end result is that architects are seldom confident that they have done the job op-

timally, or even satisfactorily.  

Architectural patterns and styles have been proposed as a way to manage the unconstrained nature 

of the architectural design process and to reduce the enormous size and complexity of the search 

space [Garlan 1996, Buschmann 1996].  Such management has simplified the architectural design 

process somewhat, but it is still a challenge: styles and patterns have replaced one form of black 

magic—architectural design—with another form—choosing, tailoring, combining, and under-

standing patterns.  Patterns are complex and their interactions with other patterns are not always 

clear.  Furthermore, patterns are always underspecified, and so the designer still needs to add in 

considerable amounts of detail to reify these into an implementable design.   

Patterns come with associated rationale, benefits, and liabilities (e.g., the Broker pattern is re-

ported to have low fault tolerance, “restricted” efficiency, and to be difficult to test and debug).  

But such claims are contextual, depending on many environmental factors and detailed implemen-

tation decisions.   

We have proposed a more fine-grained approach to architectural design, employing tactics [Bass 

2003].  Tactics are the building blocks of architectures, and hence the building blocks of architec-

tural patterns.  We have defined sets of tactics that address six quality attributes: performance, 

usability, availability, modifiability, testability, and security.  We have used these tactics over the 

past five years, as a foundation for designing and analyzing architectures.  So, for example, tactics 

can ameliorate some of the deficiencies outlined above for the Broker pattern. The low fault toler-

ance of the “vanilla” Broker pattern could be ameliorated by using some form of active redundan-

cy, for instance.
1
  

Before we discuss availability tactics in detail let us first look at an example of Modifiability tac-

tics to illustrate their impact [Bachmann 2007].  There are three classes of modifiability tactics:  

1. those that defer binding time decisions, to control deployment time and cost  

2. those that help to localize changes, reducing the number of modules directly affected by a 

change  

3. those that prevent ripple effects, limiting the modifications to localized modules   

 
1
  As will be described in Section 2.3, in one form of the active redundancy configuration, a group of processing 

nodes comprises both active and redundant nodes that receive and process identical inputs in parallel, main-
taining a synchronous state and enabling instantaneous recovery and repair.  
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To make an architecture more modifiable, the designer needs to select and realize one or more 

tactics from this set.   

Patterns package a number of tactics.  Let us examine the most common architectural pattern—the 

Layered Pattern—to see how this works in practice. Layers group together similar sets of functio-

nality and separate them from other functions that are expected to change independently.  

Through this separation, the modifiability of the system is expected to increase.  For example, 

layering is often used to insulate a system from changes in the underlying platform (hardware and 

software), increasing maintainability while reducing integration and verification costs.  This has 

been known at least as far back as Dijkstra‟s THE operating system [Dijkstra 1968]. To bring 

about this insulation, the architect creates one or more platform-specific layers to abstract the de-

tails of the underlying hardware and operating system. The rest of the system‟s functionality then 

accesses the underlying platform via these abstractions. To achieve this effect, the Layered Pattern 

employs two Localize Change tactics—Semantic Coherence and Abstract Common Services—to 

increase cohesion, and it employs three Prevent Ripple Effects tactics—Use Encapsulation,Use an 

Intermediary, and Restrict Communication Paths—to reduce coupling [Bachmann 2007].  

What is the point of this more granular representation of design operations?  A tactic is a design 

decision that is influential in the control of a single quality attribute response.  As such it is simple 

to understand and analyze—its properties and effects are well understood.  A pattern, on the other 

hand, is a prepackaged solution to a recurring problem that resolves multiple forces.  Patterns are 

more complex and so it is much harder to understand the implications of changing the pattern.  To 

understand a pattern, to tailor it, and to analyze it, you need to understand the tactics from which it 

is composed and the effects of each constituent tactic.  

Returning to the Layered Pattern, if the modifiability of the system with respect to a specific re-

sponsibility needs to be increased, one tactic that could be employed is Use an Intermediary.  

Employing this tactic modifies the design: the independent functionality and the dependent func-

tionality are now separated by a third component—the intermediary. Along with the tactic there is 

an analysis model (perhaps encapsulated in a “reasoning framework” [Bass 2005]) that allows the 

designer and the analyst to reason about the cost of a change both with and without the interme-

diary, and so make a reasoned decision.  The tactic requires effort, and hence cost, to implement 

and maintain. In addition, after the implementation of this tactic, the strength of coupling between 

the dependent and independent functionality is reduced.   

Every design decision has side effects. Once the Use an Intermediary tactic is in place, it will 

have an effect on runtime performance.  Each of these attributes—cost, coupling, and perfor-

mance impact—can be estimated by the architect and a reasoned decision can be made on whether 

to use the tactic.   

In the remainder of this report, we will show how tactics are used in practice and how they inform 

both design and analysis.  In particular we will show how availability tactics have been used and 

how they have been augmented over time to meet the needs of a changing world. 

1.1 Using Tactics in Practice 

Tactics can be used in both design and in analysis. They can be used in the design process to 

make decisions or, more commonly, to modify an architectural pattern.  In this way, tactics aid in 
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enumerating and choosing among design decisions. Similarly, tactics can be used in analysis.  

Each tactic is easier to understand in isolation than a pattern and, as described by Bachmann, 

analysis models can be associated with tactics [Bachmann 2007]. For example, there is a formula 

for determining the increase in availability by adding a redundant hot spare. The architect, using 

this formula, can then reason about the costs and benefits of using this form of redundancy.  Simi-

larly the Ping/Echo tactic can be analyzed in terms of how long it takes to detect a fault (based on 

the period of the Ping and the number of missed Pings before a fault is determined to have oc-

curred) and how the overhead of Ping messages degrades end-to-end latency in the system. To 

show how this reasoning is supported, a specific set of tactics—availability tactics—is now dis-

cussed in detail. 
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2 Tactics for Availability 

Availability tactics are designed to enable a system to endure system faults such that a service 

be  [Bass 2003].  Inherent in 

this definition is the distinction between a system fault and a system failure.  System faults are 

escalated to system failures once services are impacted to the point where they no longer comply 

with their specifications.  In operational systems, faults are detected and correlated prior to being 

reported and repaired.  Fault correlation logic will categorize a fault according to its severity (crit-

ical, major, or minor) and service impact (service affecting or non-service affecting) in order to 

provide the system operator with timely and accurate system status and allow for the appropriate 

repair strategy to be employed.  The repair strategy may be automated or may require manual in-

tervention. 

System availability builds upon the concept of system reliability by adding the notion of recovery, 

[Jalote 1994].  In 

practice, system requirements for availability are developed in accordance with steady-state avail-

ability (as opposed to instantaneous availability).  Steady-state availability is the measurement of 

a system‟s uptime over a sufficiently long (90 days, one year, total mission, etc.) duration.  The 

well-known expression used to derive steady-state availability is 

 

Where MTBF refers to the mean time between failures (derived based on the expected value of 

the system‟s fault probability density function) and MTTR refers to the mean time to repair 

(which varies according to the repair strategy employed). 

 

Table 1:  System Availability Requirements 
 

Availability Downtime/90 Days Downtime/Year 

99.0 % 21 hr, 36 min 3 days, 15.6 hr 

99.9 %   2 hr, 10 min                   8 hr,  0 min, 46 sec 

99.99 %            12 min, 58 sec                          52 min, 34 sec 

99.999 %              1 min, 18 sec                            5 min, 15 sec 

99.9999 %                           8 sec                                        32 sec 

  

In practice, system designers develop a fault tree to characterize system faults according to their 

severity and service impact, and identify a suitable repair strategy for each branch of the tree.  

Table 1 provides an example of typical system availability requirements and associated threshold 

values for acceptable system downtime, measured over observation periods of 90 days and one 

year.  The term high availability typically refers to designs targeting availability of 99.999% (“5 

nines”) or greater.  It should be noted that by definition, only unscheduled outages contribute to 

system downtime. 

)/( MTTRMTBFMTBF
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2.1 Updating the Tactics Catalog 

A categorization of availability tactics provided by Bass is reproduced in Figure 1, below [Bass 

2003].  As illustrated, availability tactics are categorized according to whether they address fault 

detection, recovery, or prevention. 

 

Figure 1: Original Availability Tactics 

We will review the availability tactics described by Bass [Bass 2003] and then show a new ver-

sion of this categorization that has been augmented and refined, based on several years of indus-

trial experience using the categorization for the analysis and design of high-availability systems.   

Figure 2 illustrates the refined view of the tactics outlined in Figure 1. In addition to refining the 

categorization, Figure 2 shows, below the tactics, some examples of specific implementation 

techniques for each. 

2.2 Fault Detection Tactics 

The tactics that were classified as being for fault detection were Ping/Echo, Heartbeat, and Ex-

ception.  In addition to these tactics, reported [Bass 2003], we have classified Voting as a 

tactic whose primary purpose is fault detection.  

Ping/Echo refers to an asynchronous request/response message pair exchanged between nodes, 

used to determine reachability and the round-trip delay through the associated network path.  

Standard implementations of Ping/Echo are available for nodes interconnected via IP (ICMP 
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[IETF 1981] or ICMPv6 [RFC 2006b] Echo Request/Response

[IETF 2006a].  

In addition we have generalized the notion of the Heartbeat tactic to System Monitor.  In a high-

availability system, a System Monitor tactic is used to monitor state of health, which includes the 

detection of hung or runaway processes; a heartbeat is one measure of health that a System Moni-

tor could observe.  When the detection mechanism is implemented using a counter or timer that is 

periodically reset, this specialization of System Monitor is referred to as a Watchdog.  During no-

minal operation, the process being monitored will periodically reset the watchdog counter/timer, 

commonly referred to as “petting the watchdog.”  

 

Figure 2: Refined Availability Tactics, with Examples 
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Table 2: Availability Tactics: Fault Detection  

Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report  

  

Ping/Echo asynchronous request/response mes-
sage pair exchanging active nodes 

determines reachability and  
round-trip delay through the as-
sociated network path 

   

  ICMP/ICMPv6  
  Echo Req/Reply 

  

   

  MPLS Ping   

   

System Monitor  In high-availability system, moni-
tors state of system health; de-
tects hung or runaway processes 

   

  Watchdog Hardware-based counter-timer periodi-
cally reset by software 

Upon expiration, indicates to sys-
tem monitor of a fault incurrence 
in the process 

   

   Heartbeat Periodic message exchange between 
the system monitor and process 

Indicates to system monitor when 
fault is incurred in process  

   

Exception Detection  Detects system conditions that 
alter the normal flow of execution 

   

   System  
   Exceptions       

System raises an exception when it 
detects a fault  

Detects faults such as divide by 
zero, bus and address faults, il-
legal program instructions 

   

    Parameter  
    Fence 

Incorporates an a priori data pattern 
(such as 0xdeadbeef) placed imme-
diately after any variable-length para-
meters of an object 

Allows for runtime detection of 
overwriting the memory allocated 
for the object’s variable-length 
parameters 

   

   Parameter Typing Employs a base class that defines 
functions that add, find, and iterate 
over Type-Length-Value (TLV) format-
ted message parameters 

Uses strong typing to build and 
parse messages 
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Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report  

  

   

Voting   

   

     Triple Modular 
      Redundancy 

Three identical processing units, each 
receiving identical inputs, whose output 
is forwarded to voting logic 

Detects any inconsistency among 
the three output states, which is  
treated as a system fault 

 

Expiration of the watchdog counter/timer provides an indication to the System Monitor that the 

process being monitored has incurred a fault.  When the underlying fault detection mechanism 

employs a periodic message exchange between the System Monitor and the process being moni-

tored, this is referred to as a Heartbeat.  For larger systems where scalability is a concern, trans-

port and processing overhead efficiency can be increased by piggybacking Heartbeat messages on 

to other control messaging being exchanged between the process being monitored and the distri-

buted system controller.  In this case, there is an added dependency between the Messaging Sys-

tem and the System Monitor.  Based on the above discussion, we revise the Fault Detection tactic 

category [Bass 2003] to include a System Monitor tactic that is further refined 

to include a Watchdog and a Heartbeat tactic. 

The Voting fault detection tactic is based on the fundamental contributions to automata theory by 

Von Neumann, who demonstrated how systems having a prescribed reliability could be built from 

unreliable co [Von Neumann 1956].  The common realization of this tactic is referred to 

as Triple Modular Redundancy (TMR), which employs three identical processing units, each of 

which receives identical inputs, and forwards their output to voting logic, used to detect any in-

consistency among the three output states.  Any such inconsistency is treated as a system fault.  

TMR depends critically on the voting logic, which can be realized either as a singleton where the 

probability of error is sufficiently low (the voting logic is a simple Boolean AND/OR combina-

tion) or as a redundant triple [Lyons 1962].  To demonstrate the improvement in system reliability 

(specifically, MTBF) of a TMR-based design, consider a system where the probability of error of 

a single bit is defined as εe.  Applying TMR to that single bit will reduce the probability of error 

from εe to  

 

For example, if a single component has an error rate of .001, a TMR version of this component 

will have an error rate of 0.000002998, or about three orders of magnitude better. TMR is com-

monly realized at the hardware gate and chip level, but can also be employed in software at the 

thread or process level for scenarios where the outputs of the multiple threads or processes can be 

synchronized by the voting logic. 

The final Fault Detection tactic identified by Bass is the Exception tactic [Bass 2003].  The Ex-

ception tactic can be further refined into Exception Detection, Exception Handling, and Exception 

Prevention tactics.  Exception Detection refers to the detection of a system condition that alters 

32 )1(3 eeeTMR



 

10 | CMU/SEI-2009-TR-006 

the normal flow of execution.  For distributed real-time embedded systems, the Exception Detec-

tion tactic can be further refined to include System Exceptions, Parameter Fence, and Parameter 

Typing tactics.  System Exceptions will vary according to the processor hardware architecture em-

ployed and include faults such as divide by zero, bus and address faults, illegal program instruc-

tions, and so forth.  The Parameter Fence tactic incorporates an a priori data pattern (such as 

0xDEADBEEF) placed immediately after any variable-length parameters of an object.  This al-

lows for runtime detection of overwriting the memory allocated for the object‟s variable-length 

[Utas 2005].  Parameter Typing employs a base class that defines functions that add, 

find, and iterate over Type-Length-Value (TLV) formatted message parameters.  Derived classes 

use the base class functions to implement functions that provide Parameter Typing according to 

each parameter‟s structure.  Use of strong typing to build and parse messages will result in higher 

[Utas 2005]. 

2.3 Fault Recovery Tactics 

Fault Recovery tactics are refined into Preparation and Repair tactics and Reintroduction tactics.  

Preparation and Repair tactics include Active Redundancy, Passive Redundancy, Spare, Excep-

tion Handling, and Software Upgrade.
2
  Reintroduction tactics include Shadow, Rollback, Esca-

lating Restart, and Non-Stop Forwarding. 

High-availability distributed real-time embedded systems commonly employ a strategy of equip-

ment protection, where spatially redundant line cards (circuit packs) are employed in a hot, warm, 

or cold sparing configuration.  These three configurations are referred to by Bass as active redun-

dancy (hot sparing), passive redundancy (warm sparing), and simply sparing  [Bass 

2003]. In our updated catalog of availability tactics, we refer to cold sparing as the Spare tactic.  

Before describing each of these three configurations, we first define a protection group as being a 

group of processing nodes where one or more nodes are “active” with the remaining nodes in the 

protection group serving as redundant spares. 

Active Redundancy refers to a configuration where all of the nodes (active or redundant spare) in a 

protection group receive and process identical inputs in parallel, allowing the redundant spare(s) 

to maintain synchronous state with the active node(s).  Because the redundant spare possesses an 

identical state to the active processor, recovery and repair can occur in time measured in millise-

conds.  The simple case of one active node and one redundant spare node is commonly referred to 

as 1+1 (“one plus one”) redundancy.  Active Redundancy can also be used for Facilities Protec-

tion, where active and standby network links are used to ensure highly available network connec-

tivity.  Standards-based realizations of Active Redundancy exist for protecting network links (i.e., 

facilities) at both the physical layer [Bellcore 1998, 1999, Telcordia 2000]

[IETF 2005]. 

Passive Redundancy refers to a configuration where only the active members of the protection 

group process input traffic, with the redundant spare(s) receiving periodic state updates.  Because 

the state maintained by the redundant spares is only loosely coupled with that of the active 

node(s) in the protection group (with the looseness of the coupling being a function of the check-

 
2
  Many tactics span multiple categories. For example, Voting can be considered a Fault Detection tactic, (detect-

ing a dissenting vote), or a Fault Preparation and Repair tactic (correlating the fault). Voting also aids in Fault 
Prevention (by identifying a processor to be reset or repaired).  However, in the taxonomy we have chosen to 
include it within the Fault Detection category. 
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pointing mechanism employed between active and redundant nodes), the redundant nodes are re-

ferred to as warm spares.  Depending on a system‟s availability requirements, Passive Redundan-

cy provides a solution that achieves a balance between the more highly available but more 

plex Active Redundancy tactic and the less available but significantly less complex Spare tactic. 

Cold sparing, or simply sparing Bass, refers to a configuration where the 

redundant spares of a protection group remain out of service until a fail-over occurs, at which 

point a Power-On-Reset procedure is initiated on the redundant spare prior to its being placed in 

service [Bass 2003].  Due to its poor recovery performance, cold sparing is better suited for sys-

tems having only high-reliability (MTBF) requirements as opposed to those also having high-

availability requirements. 

In practice, the system architect will determine whether to use Active Redundancy, Passive Re-

dundancy, or Spare based on the system availability requirements allocated. Figure 3 illustrates 

the data flow for each of these three tactics, embedded in the context of patterns. 

Recall from Section 2.2 that the Exception tactic can be refined into Exception Detection, Excep-

tion Handling, and Exception Prevention tactics, with Exception Detection being discussed in that 

section.  The mechanism employed for Exception Handling depends largely on the programming 

environment employed, ranging from simple function return codes (Error Codes) to the use of 

Exception Classes that contain information helpful in fault correlation, such as the name of the 

exception thrown, the o [Powell-

Douglas 1999]. 
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Figure 3: System Redundancy Tactics Embedded in Patterns 

Software Upgrade is another Preparation and Repair tactic whose goal is to achieve in-service 

upgrades to executable code images in a non-service- [Scott 2008].  This tactic is 

refined by Function Patch, Class Patch, and Hitless In-Service Software Upgrade (ISSU) tactics.  

The Function Patch tactic is used in a procedural programming environment and employs an in-

cremental linker/loader to store an updated software function into a pre-allocated segment of tar-

get memory.  The new version of the software function will employ the entry and exit points of 

the deprecated function.  Also, upon loading the new software function, the symbol table must be 

updated and the instruction cache invalidated.  The Class Patch tactic is applicable for targets ex-

ecuting object-oriented code, where the class definitions include a backdoor mechanism that 

enables the runtime addition of member data and functions.  Hitless In-Service Software Upgrade 

is a tactic that leverages the Active Redundancy or Passive Redundancy tactics to achieve non-

service-affecting upgrades to software and associated schema.  In practice, the Function Patch 

and Class Patch tactics are used to deliver bug fixes while the Hitless In-Service Software Up-

grade tactic is used to deliver new features and capabilities. 
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Table 3: Availability Tactics: Fault Recovery  

Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report.   

Preparation and  
Repair 

  

   

Active Redundancy Configuration wherein all of the 
nodes (active or redundant spare) in 
a protection group receive and 
process identical inputs in parallel 

Redundant spare possesses 
an identical state to the ac-
tive processor, so recovery 
and repair can occur in milli-
seconds  

   

Passive Redundancy Configuration wherein only the ac-
tive members of the protection 
group process input traffic, with the 
redundant spare(s) receiving peri-
odic state updates 

Achieves a balance between 
the more highly available but 
more complex Active Re-
dundancy tactic and the less 
available but significantly 
less complex Spare tactic 

   
Spare Configuration wherein the redun-

dant spares of a protection group 
remain out of service until a fail-over 
occurs 

Initiates power-on-reset pro-
cedure on the redundant 
spare prior to its being 
placed in service 

   
Exception Handling 

 

Depends largely on the program-
ming environment employed, rang-
ing from simple function return 
codes (Error Codes) to the use of 
Exception Classes that contain in-
formation helpful in fault correlation 

 

   
  Exception Classes Contain information helpful in fault 

correlation, such as the name of the 
exception thrown, the origin of the 
exception, and the cause of the ex-
ception thrown 

Allows system to trans- 
parently recover from system 
exceptions 

   
Software Upgrade  Achieves in-service up-

grades to executable code 
images in a non-service af-
fecting  

 

   

  Function Patch An incremental linker/loader in a 
procedural programming  
environment 

Stores an updated software 
function into a pre-allocated 
segment of target memory 
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Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report.   

   

   Class Patch Applicable for targets executing ob-
ject-oriented code, where the class 
definitions include a backdoor  
mechanism  

Enables the runtime addition 
of member data and  
functions  

   

   Hitless In-Service  
   Software Upgrade   
   (ISSU) 

Leverages the Active Redundancy 
or Passive Redundancy tactics  

Achieves non-service-
affecting upgrades to soft-
ware and associated schema  

   

Reintroduction  Failed component is reintro-
duced after correction 

   

Shadow Operates a previously failed or in-
service upgraded component in a 
“shadow mode” for a pre-defined 
duration of time  

Reverts the component back 
to an active role 

   

State  
Resynchronization    

   

When realized as a refinement to 
the Active Redundancy tactic, oc-
curs organically as active and 
standby components each receive 
and process identical inputs in  
parallel 

When realized as a refinement to 
the Passive Redundancy tactic, is 
based solely on periodic state in-
formation transmitted from the ac-
tive component(s) to the standby 
component and involves the Roll-
back tactic 

Allows a system’s control 
element to dynamically re-
cover its control plane state 
from its network peers  

 

Periodically compares state 
of the active and standby 
components to ensure  
synchronization 

   

  Graceful Restart Includes inter-networking devices 
such as cross-connects, switches, 
and packet routers 

Allows a system’s control 
element to dynamically re-
cover its control plane state 
from its network peers 

   

Rollback Checkpoint based Allows the system state to be 
reverted to the most recent 
consistent set of checkpoints 

   

   Coordinated  
   Checkpointing 

Allows processes to resolve depen-
dencies and restart at a coordinated 
checkpoint 

More complex mechanism 
that is always consistent  
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Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report.   

    Uncoordinated 
    Checkpointing 

Allows processes to take check-
points when most convenient  

Simple mechanism but may 
not always result in a consis-
tent state 

   

  Escalating Restart Varies the granularity of the compo-
nent(s) restarted and minimizes the 
level of service affectation 

At final level, completely  
reloads and reinitializes the 
executable image and asso-
ciated data segment   

   

  Non-Stop  
  Forwarding 

   

Includes inter-networking devices 
such as cross-connects, switches, 
and packet routers 

Maintains proper functioning 
of the user data plane (bear-
er channel services)  

 

Other Preparation and Repair tactics exist that are primarily realized by a hardware design and, 

hence, beyond the scope of this work.  Examples include Error Detection and Correction 

(EDAC) coding, Forward Error Correction (FEC), and Temporal Redundancy.  EDAC coding is 

typically used to protect control memory structures in high-availability distributed real-time em-

bedded systems [Hamming 1980].  Conversely, FEC coding is typically employed to recovery 

from physical layer errors occurring on external network links [Morelos-Zaragoza 2006].  Tem-

poral Redundancy involves sampling spatially redundant clock or data lines at time intervals that 

exceed the pulse width of any transient pulse to be tolerated, and then voting out any defects de-

[Mavis 2002]. 

Some Fault Recovery tactics rely on component reintroduction, where a failed component is rein-

troduced after it has been corrected.  Reintroduction tactics include Shadow, State Resynchroniza-

tion/Graceful Restart, Rollback, Escalating Restart, and Non-Stop Forwarding. 

The Shadow tactic refers to operating a previously failed or in-service upgraded component in a 

“shadow mode” for a pre-defined duration of time prior to reverting the component back to an 

active role.  In this context, the Shadow tactic is a Reintroduction version of the Hitless In-Service 

Software Upgrade tactic previously discussed as a Preparation and Repair tactic. 

Similarly, State Resynchronization is a reintroduction refinement to the Active Redundancy and 

Passive Redundancy preparation and repair tactics.  When realized as a refinement to the Active 

Redundancy tactic, the State Resynchronization occurs organically, as the active and standby 

components each receive and process identical inputs in parallel.  In practice, the states of the ac-

tive and standby components are periodically compared to ensure synchronization.  This compari-

[Morelos-Zaragoza 2006] or, for sys-

tems providing safety-critical services, a message digest calculation (a -

[Schneier 2001].  Conversely, when realized as a refinement to the Passive Redundancy (warm 

sparing) tactic, State Resynchronization is based solely on periodic state information transmitted 

from the active component(s) to the standby component(s).  This operation involves an additional 

reintroduction tactic referred to as Rollback.  Rollback is a checkpoint-based recovery mechanism 
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that allows the system state to be reverted to the most recent consistent set of checkpoints.  The 

set of checkpoints is referred to as a “recovery line,” which may be generated using graph-

theoretic techniques described by Elnozahy [Elnozahy 2002].  Checkpoint-based rollback recov-

ery may employ Uncoordinated Checkpointing, where processes are allowed to take checkpoints 

when most convenient, or Coordinated Checkpointing, where processes resolve dependencies and 

[Scott 2008].  A specialization of State Resynchronization, 

used in tandem with the Non-Stop Forwarding tactic is Graceful Restart, which allows a system‟s 

control element to dynamically recover its control plane state from its network peers.  Standard 

realizations of Graceful Restart have emerged for a variety of commonly deployed routing and 

[IETF 2007  2007c] [IETF 2007a [IETF 2008], LDP

[IETF 2003b] - [IETF 2003a, 2003c]. 

Escalating Restart is a Reintroduction tactic that allows the system to recover from faults by vary-

ing the granularity of the component(s) restarted and minimizing the level of service affectation

[Utas 2005].  For example, consider a system that supports four levels of restart, as follows.  The 

lowest level of restart (call it Level 0), and hence least impacting on services, employs Passive 

Redundancy (warm restart), where all child threads of the component in which the fault was de-

tected are killed and recreated.  In this way, only data associated with the child threads is freed 

and reinitialized.  The next level of restart (Level 1) frees and reinitializes all unprotected memory 

(protected memory would remain untouched).  The next level of restart (Level 2) frees and reini-

tializes all memory, both protected and unprotected, forcing all applications to reload and reini-

tialize.  And the final level of restart (Level 3) would involve completely reloading and reinitializ-

ing the executable image and associated data segments.  Support for the Escalating Restart tactic 

is particularly useful for the concept of graceful degradation, where a system is able to degrade 

the services it provides while maintaining support for mission-critical or safety-critical applica-

tions. 

Another Reintroduction tactic used to enable graceful degradation of high-availability systems is 

Non-Stop Forwarding (NSF).  This concept is borrowed from commercial best current practice in 

designing inter-networking devices, such as cross-connects, switches, and packet routers.  Non-

Stop Forwarding refers to the ability of the device to maintain proper functioning of the user data 

plane (bearer channel services), even when the device‟s control and/or management planes are out 

of service.  Support for Non-Stop Forwarding implies a strict separation of control/management 

and data plane functionality in the system design, as described  through the Internet Engineering 

[IETF 2004]. In heritage digital cross-connect (DXC) and ATM switch design, this 

tactic is referred to as the “Headless Mode” of operation.  The term Non-Stop Forwarding has 

emerged as the standard nomenclature used when the Headless Mode tactic is applied to packet 

router designs targeting high-availability services. 

2.4 Fault Prevention Tactics 

Fault Prevention tactics include Removal from Service, Transactions, Process Monitor, and Ex-

ception Prevention.  In the context of fault prevention, the Removal from Service tactic refers to 

placing a system component in an out-of-service state for the purpose of mitigating potential sys-

tem failures.  One example involves taking a component of a system out of service and resetting 

the component in order to scrub latent faults (such as memory leaks, fragmentation, or soft errors 
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in an unprotected cache) before the accumulation of faults become service affecting (resulting in 

system failure). 

Systems targeting high-availability services leverage transactional semantics to ensure that asyn-

chronous messages exchanged between distributed components are atomic, consistent, isolated, 

and durable [Gray 1993].  These four properties are referred to as the “ACID properties” and are 

generally a requirement for high-availability systems, particularly those that provide either  

mission-critical or safety-critical services.  The Transactions tactic is typically realized using an 

“atomic commit protocol,” the most common of which is the “two-phase commit” (a.k.a. 2PC) 

protocol, originally described by Gray [Gray 1993].  Figure 4 illustrates the successful case of a 

distributed two-phase commit transaction.  For the case where a distributed two-phase commit 

transaction fails, the transaction coordinator will employ the Rollback tactic among all distributed 

components involved in the failed transaction, in order to ensure a consistent and durable system 

state. 

 

  

Figure 4: Transactions Tactic: Two-Phase Commit 
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In the context of fault prevention, the Process Monitor tactic is employed to monitor the state of 

health (SOH) of a system process in order to ensure that the system is operating within its nominal 

operating parameters.  This tactic has a symbiotic relation to the System Monitor previously de-

scribed, and in practice, the Process Monitor may be a lower level function of a hierarchical sys-

tem monitoring function. 

Recall from the previous discussion that the Exception tactic has been refined into Exception De-

tection, Exception Handling, and Exception Prevention tactics, with Exception Detection de-

scribed in Section 2.2 and the Exception Handling tactic described in Section 2.3.  The Exception 

Prevention tactic refers to techniques employed for the purpose of preventing system exceptions 

from occurring.  The use of Exception Classes, which allows a system to transparently recovery 

from system exceptions, was discussed in Section 2.3 [Powell-Douglas 1999].  Other examples of 

tactical refinements used to realize Exception Prevention include abstract data types such as Smart 

Pointers and the use of Wrappers [Gamma 1995] to prevent faults such as dangling pointers and 

semaphore access violations from occurring. 

 

Table 4: Availability Tactics: Fault Prevention 

Tactic Mechanism Result 

Control/click on tactic to go 
to its description in report 

  

Removal from  
Service 

Places a system component in an 
out-of-service state 

Allows for mitigating potential sys-
tem failures before their accumu-
lation affects service 

   

Transactions  Ensures a consistent and durable 
system state 

   

  Atomic Commit  
  Protocol 

Most commonly the two-phase 
commit 

 

   

Process Monitor 

 

 Monitors the state of health of a 
system process; ensures that the 
system is operating within its no-
minal operating parameters 

   

Exception  
Prevention 

 Prevents system exceptions from 
occurring 

   

  Exception Classes Contain information helpful in fault 
correlation, such as the name of 
the exception thrown, the origin of 
the exception, and the cause of the 
exception thrown 

Allows system to transparently 
recover from system exceptions 

   

  Smart Pointers/ 
  Wrappers 

Abstract data types that control all 
access through pointers 

Prevent faults such as dangling 
pointers and semaphore access 
violations 
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3 An Example 

We will now present an example from the internetworking domain, where a network node is re-

sponsible for providing high-availability services, such as cross-connecting voice circuits, switch-

ing cells, frames, or packets, or routing and forwarding IP packets.   

The system architect, knowing that high availability is crucial, has determined that some form of 

redundancy will be employed.  The architect‟s next step is to determine and apply the appropriate 

redundancy tactics to ensure compliance with the system‟s precise availability requirements.  

Architectural insight can and should be developed through model-based analysis wherever possi-

ble.  Consider the case of an architecture being developed for a high-availability system having a 

99.999% (a.k.a. “5 nines”) availability requirement.  We will show how we employ a Markov 

model to determine the appropriate redundancy tactic to employ in the system architecture. 

3.1 The Availability Model 

The availability model, from Gokhale, employed and illustrated in Figure 5, takes into account the 

Mean Time Between Failure and Mean Time To Recover for both hardware and software compo-

nents of the system [Gokhale 2005].  In addition, failures are characterized according to high and 

low severity levels.  Each of the hardware and software components can be in one of three states: 

In-Service, Degraded Service, or Out-of-Service.  In-Service implies nominal operation with no 

faults having been detected and with service levels consistent with the components‟ specifica-

tions.  Degraded Service implies that a severity 2 (low priority) fault has been detected and corre-

lated and is in the process of being mitigated.  Mitigation strategies for severity 2 faults may range 

from resetting ASIC personalities or software processes to executing a managed fail-over to a re-

dundant processor.  Out-of-Service implies that a severity 1 (high priority) fault has been detected 

and correlated and is in the process of being mitigated.  Mitigation of severity 1 faults typically 

involves a managed fail-over to a redundant processor.  The combination of three states for hard-

ware and software components results in a state space of nine states in the Markov model.  The 

simultaneous severity 1 failure state (i.e., severity 1 faults in both hardware and software) is not 

considered to be a valid state, as the fault detection and correlation logic would assign the (root 

cause) fault to either software or hardware, but not both. 

The model assumes that MTBF values for all four types of failures are exponentially distributed.  

MTBF values for severity 1 and 2 hardware and software failure states are denoted in the model 

using the {λHW-SEV1, λHW-SEV2, λSW-SEV1, λSW-SEV2} nomenclature.  Similarly, the model assumes 

that MTTR values for recovering from the four types of failures are exponentially distributed.  

MTTR values for recovering from severity 1 and 2 hardware and software failure states are de-

noted by the {μHW-SEV1, μHW-SEV1, μSW-SEV1, μSW-SEV1} nomenclature.  The steady-state system 

availability (A) is determined by adding the probabilities of the system operating in a nominal In-

Service state and the various combinations of In-Service and Degraded Service states. 

):():():():( 2222 SEVSEVISSEVSEVISISIS SWHWPSWHWPSWHWPSWHWPA  
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In order to solve the preceding equation, a system of balance equations is derived from the availa-

bility model.  The derivation of the balance equations and resulting solution for this model are 

found in Gokhale [Gokhale 2005]. 

Table 5 provides an analysis of system availability for three separate Redundancy tactics: Active 

(hot sparing), Passive (warm sparing), and Spare (cold sparing).  The analysis assumes that soft-

ware failures are five times more likely to occur than hardware failures and that severity 2 failures 

are also five times more likely to occur than severity 1 failures.  The analysis assumes that the 

MTTR for severity 2 failures is 30 seconds for each scenario (active, passive, and spare) and that 

the MTTR for severity 1 failures is one second for Active Redundancy, five seconds for Passive 

Redundancy, and 15 minutes for the (cold sparing) Spare tactic.  Wherever possible such assump-

tions can and should be validated by measurements of prototypes or existing systems.  

From this analysis, the system architect is able to determine that an availability requirement of 

99.999% can be met using the Passive Redundancy (warm sparing) tactic, albeit with no addition-

al margin.  Note also that this analysis also indicates the difficulty in achieving a more stringent 

99.9999% (a.k.a. “6 nines”) of availability, even when the more complex and more costly Active 

Redundancy tactic is used. 

 

Figure 5: Markov Model of System Availability 
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Table 5: System Availability of Redundancy Tactic Used  

 

3.2 The Resulting Redundancy Tactic 

In this example we achieved equipment protection via the Passive Redundancy (warm sparing) 

tactic, where the active processor(s) in a protection group receives input traffic and transmits 

checkpointed state periodically to the associated redundant spare(s).  In practice, this tactic 

achieves a reasonable balance between design complexity and performance for MTTR. Systems 

designed for high availability (99.999% uptime) commonly employ Passive Redundancy.  Con-

versely, systems with more stringent availability requirements will necessarily employ the more 

complex Active Redundancy (hot sparing) tactic, to further reduce MTTR. 

 

Figure 6: Passive Redundancy Tactics 

A realization of the Passive Redundancy tactic, embedded in a pattern, is illustrated in Figure 6, 

where each of the boxes is a system node.  The pattern employs four functions: the Active Node, 

the Redundant (passive/warm spare) Node, a Redundancy Manager, and a System Journal (a jour-

naling mechanism).  The Active and Redundant Nodes are identical copies of a system processor 

(or collection of processors).  The Active Node periodically transmits checkpointed state data to 

the Redundant Node, to maintain a loosely synchronized state.  The System Journal is employed 

to ensure that transient state not included in the checkpoint data set is not lost as a result of a role 

change (where the Redundant Node assumes the Active role).  The Redundancy Manager is used 

to manage the assignment of (Active, Spare) roles to the processors in the protection group and 

detect the “liveness” of the currently designated Active Node, to identify the recovery line (i.e., 

the most recent consistent set of checkpointed data), and to manage the transmission of journaled 

data from the System Journal to a Redundant Node undergoing a role change (when assuming the 

Function Failure Severity MTBF (Hours) MTTR_active (Sec) MTTR_passive (Sec) MTTR_sparing (Sec)

1 250,000 1 5 900

2 50,000 30 30 30

1 50,000 1 5 900

2 10,000 30 30 30

Availability 0.999998 0.999990 0.9982

Hardware

Software
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role of an Active Node).  This pattern may additionally employ a Reintroduction tactic such as 

Coordinated Checkpointing, where the processes involved autonomously resolve checkpoint de-

pendencies and restart at a coordinated checkpoint, or may use Uncoordinated Checkpointing, 

where each process is allowed to save a checkpoint when it is m  

Elnozahy, Uncoordinated Checkpointing achieves a lower latency recovery for the nominal case 

but can be subjected to resolving a cascade of checkpoint dependency issues for the off-nominal 

case (referred to as the “Domino Effect”) [Elnozahy 2002].  Coordinated Checkpointing elimi-

nates the Domino Effect at a cost of slightly higher latency for each recovery (due to the 

processing penalty associated with central management of the distributed checkpoint data).  An 

excellent survey of best practices for checkpoint rollback-recovery protocols is provided by

Elnozahy [Elnozahy 2002].  

For cases where either a singleton spare is used to protect multiple active nodes (1:N, pronounced 

“one for N”) or multiple spares are used to protect multiple active nodes (M:N), the checkpoint 

and journal data can be saved to persistent (or redundancy-protected) memory, with the Redun-

dancy Manager directing the Redundant Node as to which set of checkpoint and journaled data to 

retrieve upon a role change. 

In addition to simplified design complexity (when compared to the stricter state synchronization 

requirements imposed by the Active Redundancy tactic), we find that the time overhead for the 

nominal case of Passive Redundancy is low, as it is a function solely of the time required to ex-

port the journaled (transient, uncheckpointed) data from the Active Node and to periodically cal-

culate a new recovery line, save the data as a checkpoint, and transmit the checkpointed state to 

the Redundant Node.  Similarly, the space overhead imposed by this tactic is low, bounded by the 

checkpointed state residing on the Active and Redundant Nodes and the transient journaled data 

maintained on the Active Node and on the node hosting the System Journal.  And finally, the 

communication overhead imposed by this tactic for the nominal case is also low, bounded by the 

control messaging used to register with the System Journal and for the Redundancy Manager to 

(re)assign roles, and the replication of checkpoint and journaled data between Active Node and 

the Redundant Node and System Journal, respectively [Saridakis 2002]. 

3.3 Tactics Guide Architectural Decisions 

The system architect needs to determine the appropriate availability tactic(s) to employ based on a 

consideration of the MTTR requirements for the various network services enabled by the device, 

as well as the side effects of the chosen tactics.  For example, if a given processor in the system 

hosts a service with a requirement that service outages be repaired on sub-second timescales, then 

Active Redundancy (hot sparing) is the suitable availability tactic.  Conversely, if that processor 

hosts a service that requires that outages be repaired in timescales measured in seconds, then Pas-

sive Redundancy (warm sparing) may be employed.  And, if the system requirements allow for 

service outages to be repaired in timescales measured in minutes, then Sparing (cold sparing) is a 

suitable availability tactic to employ.  Note also that some systems have both stringent availability 

and reliability requirements, in which case it may be necessary to employ either Active Redundan-

cy or Passive Redundancy (to address the MTTR component of the availability requirement) in 

tandem with Sparing (to address system reliability requirements relating to Mean Mission Dura-

tion).  Each of these tactics has side effects: Active Redundancy consumes more runtime resources 

(processing and communication) than Passive Redundancy, to keep the redundant components 
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synchronized. And both Active and Passive Redundancy increase the cost of the system more than 

Sparing.  In each case the availability requirement, along with performance requirements and con-

straints on costs, guides the architect to a choice of tactics, even though the analysis is initially at 

a crude, often heuristic, level. 

In determining the appropriate availability tactic(s) to employ, the system architect must consider 

the system availability requirement(s) and any associated availability sub-allocations for the con-

stituent system components.  Recall from the previous discussion that availability extends the 

concept of system reliability (defined by the MTBF) to include the notion of Mean Time to  

Recovery (MTTR).  It is the system MTTR (or associated MTTR values sub-allocated to the  

system‟s constituent components) that determine the set of appropriate availability tactics to  

consider. 

For the high-availability example provided, various architectural alternatives could be considered.  

For example, rather than employ the Passive Redundancy tactic, the architect could specify the 

more stringent Active Redundancy tactic, which would provide a greater capability with regard to 

system availability but at the risk of over-engineering the system (increasing cost and complexity) 

for the given set of requirements.  Once Passive Redundancy had been selected as the suitable 

tactic, the size of the protection group  had to be considered.  For example, would the system em-

ploy a 1:1 form of equipment protection, where a single warm spare is employed for each active 

processor, or will the system employ a 1:N (one redundant spare used for N active processors) 

form, or even an M:N (M redundant spares used to protect N active processors) form of equip-

ment protection?   

Next, once the sparing model has been selected, the design space includes multiple options for 

realizing the Reintroduction tactic.  For example, transactional semantics can be employed to en-

sure that the ACID properties are supported by the system‟s distributed database (which does not 

imply use of a relational database).  Alternately, a checkpointing strategy could be used, leverag-

ing either Coordinated Checkpointing or Uncoordinated Checkpointing along with one of the 

rollback recovery protocols described by Elnozahy [Elnozahy 2002].  For networking devices that 

host link-state protocols, which support the notion of peering with its neighboring nodes, Reintro-

duction tactics such as Graceful Restart and Non-Stop Forwarding could be employed in order to 

reacquire control plane state (from its peer) while maintaining fault-free user data services. 

Verifying that the collection of tactics employed results in a system that complies with its availa-

bility requirements involves several levels of analysis.  In practice, the system availability re-

quirement is decomposed into separate sub-allocations for hardware- and software-induced fail-

ures.  For hardware, a common approach for estimating system reliability (the MTBF component 

of availability) is to employ a Markov Chain to model the interconnection of the various hardware 

components, where the failure rate function for a given component follows a Weibull distribution.  

Modeling the system reliability for software-induced failures differs from the above approach due 

to the failure rate function for the constituent component‟s being more accurately represented by a 

Poisson distribution, due to the periodic introduction of new software releases.  Popular analytical 

models used to estimate software reliability are based on Markov Chains, Non-Homogeneous 

Poisson Processes (NHPP), and Bayesian formulations [Musa 1987, Xie 1991]. 

The contribution of both hardware- and software-induced failures to system availability can be 

computed as the ratio of uptime to the sum of uptime and downtime, as the time interval over 
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which the measurement is made approaches infinity (as described in Section 3).  Note that the 

downtime is the product of the failure intensity and the MTTR.  To reiterate, only service-

affecting failures contribute to the system availability. 
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4 Implications 

We can draw a number of implications from this example. The most important is that while archi-

tectural design, even for a fragment of a system, is a complex search through a potentially un-

bounded space of possibilities, the use of tactics guides and constrains this search and makes it far 

more tractable.  Each tactic can be associated with an analytic model (e.g., see the discussion in 

Section 3.1).  So tactics work on two levels: similar to architectural patterns they guide the archi-

tect towards a particular solution—a choice of a tactic—but unlike architectural patterns they sup-

port a deeper (more precise) form of analysis based on analytic models. As shown in our example, 

these analyses may range from guidelines and heuristics to precise mathematical models, as dic-

tated by the level of risk surrounding the architecture‟s realization of a quality attribute. 

Tactics are the building blocks of patterns. A pattern, such as the one shown in Figure 6, is a 

composition of multiple tactics: System Monitor, Passive Redundancy, State Resynchronization, 

Rollback, and so on.  Each of these may in turn be decomposed into even lower level tactics 

(Heartbeat, Coordinated Checkpoint, Graceful Restart, Non-Stop Forwarding, etc.).  
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5 Conclusions 

This report has presented an update to the catalog of architectural tactics for availability. We have 

a similar update to the catalog for performance that space prevents us from presenting here.  

These updates have been motivated by practice—by observing, and categorizing, the sets of tac-

tics in actual use. The structure of neither the availability nor the performance tactic catalog has 

changed dramatically since they were introduced seven years ago; this shows that the notion of 

tactics is robust—they are fundamental elements of design.  Only the realizations of the tactics 

have changed, and this is to be expected as technologies mature. 

This report has also shown how the catalog of tactics can be, and is, used in practice, to guide in 

making fundamental architectural design decisions that have implications in multiple dimensions. 

For each tactics-based design decision there are heuristics associated with the decision, as well as 

associated analytic models. 

From this presentation we can see that tactics are useful in both design and analysis. They are use-

ful because they restrict the design and analysis vocabulary, reduce the size of the search space, 

and directly suggest analytic models.   
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